Checking Correctness of

Concurrents Objects:
Tractable Reductions to Reachability

Ahmed Bouajjani
LIAFA, Univ Paris Diderot - Paris 7

Joint work with

Michael Emmi Constantin Enea Jad Hamza
IMDEA LIAFA, U Paris Diderot - P7

FSTTCS, Bangalore, December 16, 2015

Concurrent Systems

e Concurrency at all levels of computer systems

Hardware (Multicores), OS (device drivers, ...), Applications

e Concurrent systems are complex

Huge number of interleavings/action orders, intricate behaviours

e Need of abstractions

Atomicity, synchrony, ...

Concurrent

@

Data Structures

@

Push(0) Push(1)
Pop(1) Pop(0)
Empty(true)
Y v
~ N\ N (O p
Fush =0B Bmpty Methods
_) U J . Implementation
v v v

Low Level Representation

Abstract (Client) View

» Operations are considered to be atomic
* Thread executions are interleaved
e Executions satisfy sequential specitications

Push(1) Pop(0) Empty(true)

Abstract (Client) View

* Operations are considered to be atomic
* [hread executions are interleaved

e Executions satisfy sequential specitications

Push(1) Pop(0) Empty(true)

A “simple” implementation:

e Jake a seqguential iImplementation

* Lock at the beginning, unlock at the end of each method
 + Reference Implementation: simple to understand

- Low performances in case of contention

-fficient Concurrent Implementations

e Avoid the use of locks

* Maximise parallelisation of operations

Push(1) Pop(0) Empty(true)

e Check for interferences, and retry

e Use lower level synchronisation primitives (CAS)

-fficient Concurrent Implementations

e Avoid the use of locks

* Maximise parallelisation of operations

Push(1) Pop(0) Empty(true)

e Check for interferences, and retry

e Use lower level synchronisation primitives (CAS)

> Complex behaviours!

> Need to ensure the atomic view to the user!

Observational Refinement

Specification:

Implementation Atomic Operations

For every Client,
Client x Impl is included in Client x Spec

Linearizapility [Herlihy, Wing, 1990]

Pop(0)
Push(0) '
v v v
Push(O) Pop(0)

Valid sequence in the sequential specification

* Reorder call/return events, while preserving returns —> calls
* Find “linearization points” within execution time intervals
* s.t. match some sequential execution

Linearizability <=> Observational Refinement
[Filipovic, O’'Hearn, Rinetzky, Yang, 2009], [B., Enea, Emmi, Hamza, 2015]

Checking Linearizability: Complexity

Existing results

e NP-complete for a single computation [Gibbons, Korach, 1997]

e |n EXSPACE for a fixed number of threads, finite-state
methods and specifications [Alur et al., 1996]

Recent contributions

o EXPSPACE-hard for FS impl.’s and spec’s [Hamza 2015]

e Undecidable for unbounded number of threads, FS
methods and spec.’s [B., Enea, Emmi, Hamza, 2013]

Checking Linearizability: Main Existing Approaches

® Enumerate executions and linearisation orders (bug detect.)
e.g. Line-up [Burckhardt et al. PLDI’10]

e Fixed linearisation points in the code (correctness)

Checking linearizability —> Reachability problemy/Invariant checking

e.qg., [Vafeiadis, CAV'10],
[Abdulla et al., TACAS 2013]

Checking Linearizability: Main Existing Approaches

® Enumerate executions and linearisation orders (bug detect.)
e.g. Line-up [Burckhardt et al. PLDI’10]

e Fixed linearisation points in the code (correctness)

Checking linearizability —> Reachability problemy/Invariant checking

e.qg., [Vafeiadis, CAV'10],
[Abdulla et al., TACAS 2013]

e Scalability issues

e Fixing linearisation points is not always possible
e.g., time-stamping based stack [Dodds, Haas, Kirsch, POPL'15]

Reductions Linearizability to State Reachability”

Why"
* Reuse existing tools for State reachability
* | ower complexity, decidability

Reductions Linearizability to State Reachability”

Why"
* Reuse existing tools for State reachability
* | ower complexity, decidability

General Approach:

Given a library L and a specification S,
define a monitor M (+ designated bad states) s.i.
L is linearisable wrt S iff
L X M does not reach a bad state

Reductions Linearizability to State Reachability”

Why"
* Reuse existing tools for State reachability
* | ower complexity, decidability

General Approach:

Given a library L and a specification S,
define a monitor M (+ designated bad states) s.i.
L is linearisable wrt S iff
L X M does not reach a bad state

Issue:

e The computational power of M7
e |deally, M should be a finite state machine
e M should be “simple” (low overhead)

Option 1: Under-approximate Analysis
B, Emmi, Enea, Hamza, POPL'15]

e Bounded information about computations
o Useful for efficient bug detection

Option 1: Under-approximate Analysis
B, Emmi, Enea, Hamza, POPL'15]

e Bounded information about computations
o Useful for efficient bug detection

e Bounding concept for detecting linearizability violations?
e Should offer good coverage, and scalability

Option 1: Under-approximate Analysis
B, Emmi, Enea, Hamza, POPL'15]

e Bounded information about computations
o Useful for efficient bug detection

* Bounding concept for detecting linearizability violations”
e Should offer good coverage, and scalability

e Interval-length bounded analysis

e Based on characterising linearizability as history inclusion
e Monitor uses counters

e Allows for symbolic encodings

e Efficient static and dynamic analysis

Option 2: Particular classes of Objects
[B, Emmi, Enea, Hamza, ICALP’15]

What is the situation for usual objects”
stacks, queues, elc.

e \/iolations: Finite number of bad patterns

e They can be captured with small finite-state automata
e Linear reduction to state reachabillity

e Decidability tor unbounded number of threads

lIstories
History of an execution e:
H(e) = (O, label, <)

where

e O = Operations(e)
e label: O —> MxVxV
* < Is a partial order s.1.

01 <02 iff Return(O1) is before Call(O2) in e

c(push,1) r(push,tt) c(pop,-) c(pop,-) r(pop, 1) c(push,?2) r(push,tt) r(pop,2)

pop(2)
oush(1)
pop(1) @ push(2)

Linearizability as a |

istory Inclusion

Consider an abstract data structure,
let S be its sequential specification,
and let Ls be a sequential implementation of S,
i.e., Ls satisfies S

Lc reference concurrent implementation =
Ls + lock/unlock at beginning/end of each method

Linearizability as a History Inclusion

Consider an abstract data structure,
let S be its sequential specification,
and let Ls be a sequential implementation of S,
.e., Ls satisfies S

Lc reference concurrent implementation =
Ls + lock/unlock at beginning/end of each method

Lemma:
H(Lc) is the set histories that are linearised to a sequence in S

Thm: L is linearisable wrt S iff H(L) is included in H(Lc)

Abstracting Histories

Weakening relation

hi1 = hz2 (h1is weaker than hy)
iff
hi has less constraints than ho

Lemma:
(hi=hz2and h2is in H(L)) ==> hiisin H(L)

Approximation Schema

Weakening function Ak, for any given k>0, s.t.
e Ax(h) < h
e Ao(h) < Ai(h)<Ash)<...<h
e Thereis a ks.t. h = Ax(h)

Approximation Schema

Weakening function Ak, for any given k>0, s.t.
e Ax(h) < h
e Ao(h) < Ai(h)<Ash)<...<h
e Thereis a ks.t. h = Ax(h)

Approximate History Inclusion Checking, for fixed k>0

e Given a library L and a specification S
e Check: Is there an h in H(L) s.t. Ak(h) is not in H(S)?
e Ax(h)is notin H(S) => his not in H(S) — Violation!

Histories are Interval Orders

Interval Orders = partial order (O, <) such that

(01 <01 and 02 < 02") implies (01 <02 or 02 <o0l’)

’0
*
‘0
*

’0
*
.0
*

‘0
*
‘0
*

Prop: For every execution e, H(e) is an interval order

Notion of Length

Let h = (O,<) be an Interval Order (history in our case)

e Past of an operation: past(o) = {0" : 0" < 0]
e | emma [Rabinovitch’78]:

The set {past(o) : o in O} is linearly ordered

* The length of the order = number of pasts - 1

Canonical Representation of Interval Orders

* Mapping | : O —> [n]2 where n = length(h) [Greenough '76]

e 1(0) = [i, i], wit

push(1)

. Pop(3) .

N1, | £ n, such that
| = |[{past(0’) : 0’ < 0}| and
j = |{past(0’) : not (0 < 0')}| - 1

pop(2)

pop(1) Epush(2)§p

ush(3)§

BSounded Interval-length Approximation

Let Ax maps each h to some h’ = h of length k

=> Keep precise the information about the k last intervals

push(1)

K=2

pop(3)

pop(3)
push(1)

pop(1) —% Push(3)—’P0P(2)

push(2)

épop(1) épush(Z)Epush(3)§

\

Counting Representation of Interval Orders

Count the number of occurrences
of each operation type in each interval

 h=(0, <)an |O with canonical representation |:0—>[k]?

* Associate a counter with each operation type and interval
* T1(h) is the Parikh image of h

* |t represents the multi-set { [label(o), [(0)] :0in O}

Prop: Hu(e) is in H(L) iff T[(Hx(e)) is in TT(Hk(L))

Reduction to Reachability with Counters

Hk(L) subset of Hk(S)
iff
TT(Hk(L)) subset of TT(H«(S))
Consider k-bounded-length abstract histories

Track histories of L using a finite number of counters

Use an arithmetic-based representation of T(H«(S))

TT(HK(S)) can be either computed, or given manually

Check that TT(Hk(S)) is an invariant

—xperimental Results: Coverage

100000

Histoires 1

Violations =
Covered w/ k=4 mm
Covered w/ k=3 =1
10000 | Covered w/ k=2 ——=
Covered w/ k=1 ——
Covered w/ k=0 ——

1000

100

10

Comparison of violations covered with k < 4

- Data point: Counts in logarithmic scale over all executions (up to 5 preemptions) on
Scal’s nonblocking bounded-reordering queue with =4 enqueue and =4 dequeue

* X-axis: increasing number of executions (1023-2359292)
- White: total number of unique histories over a given set of executions

- Black: violations detected by traditional linearizability checker (e.g., Line-up)

-Xperimental Results: Runtime Monitoring

1000
Linearization]
Operation Counting 3
100
10
| M/J\v\

Comparison of runtime overhead
between Linearization-based monitoring and Operation counting

- Data point: runtime on logarithmic scale, normalised on unmonitored execution time
- Scal’s nonblocking Michael-Scott queue, 10 enqueue and 10 dequeue operations.
+ X-axis is ordered by increasing number of operations

Cxperimental Results: Static Analysis

Library Bug P K m n Time
Michael-Scott Queue B1 (head) 2x2 1 2 2 24.76s
Michael-Scott Queue B1 (tail) 3x1 1 2 3 45.44s
Treiber Stack B2 3x4 1 1 2 52.59s
Treiber Stack B3 (push) 2x2 1 1 2 24.46s
Treiber Stack B3 (pop) 2x2 1 1 2 15.16s
Elimination Stack B4 4x1 O 1 4 317.79s
Elimination Stack B5 3x1 1 1 4 222.04s
Elimination Stack B2 3x4 O 1 2 434.84s
Lock-coupling Set B6 1x2 O 2 2 11.27s
LFDS Queue B7 2x2 1 1 2 77.00s

- Static detection of injected refinement violations with CSeq & CBMC.

- Program Pij with i and j invocations to the push and pop methods, explore n-round
round-robin schedules with m loop iterations unrolled, with monitor for Ak.

-+ Bugs: (B1) non-atomic lock, (B2) ABA bug, (B3) non-atomic CAS operation, (B4)
misplaced brace, (B5) forgotten assignment, (B6) misplaced

Focusing on Special Classes of Objects
|B., Emmi, Enea, Hamza, ICALP 2015]

Inductive definition of sequential objects (restricted
language based on constrained rewrite rules)

Characterizing concurrent violations using a finite
number of “bad patterns™, one per rule

Defining finite-state automata recognising each of the
“bad patterns” (using data independence assumption)

Reducing linearizability to checking the emptiness of the
Intersection with these automata.

Specitying gueues and stacks

Queue

e U.v:Q & u:ENQ* —> Enq(x).u.Deq(x).Vv:Q

e U.Vv:Q & nounmatched Enginu —> u.Emp.v:Q

Stack

e U.VvV:S & nounmatched Pushinu —>
Push(x) . u. Pop(x).Vv:S

e U.VvV:S & nounmatched Pushinu —>
u.Emp.v:S

Order Violation

FIFO violation:

Eng(1) Deq(2)

ret(Eng(1)) < call(Eng(2)) & ret(Deq(?2)) < call(Deqg(1))

—mpty Violation

EMP

Pop1

—mpty Violation

EMP

Order Violation cont.

Pop,

Automaton for Empty Violation

| EMP |
| PUShl | | Popl |
| | PlIJShl | | | Pop, | |
| Push; | Pop; -
| | Push; | | | | PObl |
Recognized by:
25 25 2, 25
ret Push(1) A call EMP() % ret EMP()
— g0 >© g2 S
call Pop(1 ret Push(1
call Push(1) P(1) (1)

as 25

Automaton for Push-Pop Order Violation

| Push> Pop2

Pu5h1 Popl
PUShl ’Dopl

Recognized by:

23 23 23 23 23
call Push(2)-
& ret Push(2) Aret Push(l)% call Pop(2) % ret Pop(2)
— qi >% >® g2 >
call Push(1) call Pop(1) ret Push(1)

a3 23

Linearizabllity to State Reachability

Thm:

For each S in {Stack, Queue, Mutex, Register},
there is an automaton A(S) s.t.
for every data independent concurrent implementation L,
L is linearisable wrt S iff L intersected with A(S) is empty

Same complexity as state reachability

Conclusion

e Linearizability checking is hard/undecidable in general
e But tractable reductions to state reachability are possible

e Abstracting histories using Interval-length Bounding:
* Monitor uses counters: simple encoding of order constraints

e Use symbolic techniques
o Static and Dynamic Analysis
* (G00d coverage, scalable monitoring

e (Consider relevant classes of concurrent objects:

 Covers common structures such as stacks and queues
e Finite-state monitor: Linear reduction to state reachability

e Decidabillity for unbounded number of threads

—uture work

e Extend the 2nd approach to other structures, e.g., sets

e Combine with providing linearisation policies
[Abdulla et al., TACAS'13]

e Distributed (replicated) data structures
Weaker consistency notions are needed:
Eventual consistency, causal consistency, etc.

e Eventual consistency —> Model-checking, Decidability
[B., Enea, Hamza, POPL'14]
e Causal consistency undecidable [Hamza, 2015]

METIS/NETYS 2016

8th Intern. Spring School on Distributed Systems
16-18 May, Rabat, Morocco
his year's topic: Big Data, Cloud
http:/metis2016.netys.net/home/
Organizers: Rachid Guerraoui (EPFL), Mohammed Erradi (ENSIAS, Rabat)

4th International Conference on Networked Systems
18-20 May, Rabat, Morocco

http:/netys.net/
PC chairs: Parosh Aziz Abdulla (U. Uppsala), Carole Delporte (U. Paris 7)

+ Workshops

