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Shape Analysis

In imperative settings, shape analysis is concerned with
discovering/verifying the shape of a pointer into memory

p = LinkedList



Shape Analysis for Functional (Typed) Programs

In functional languages, we have have types

p = Cons(.,Cons(., Nil))
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Shape Analysis for Functional (Typed) Programs
In functional languages, we have have types

f : X tree — O list

How can we use types to express precise shape
information?

f : {t:X tree} — {l:x list|}

$ & SomeShape(l)=SomeOtherShape(t)
type refinement predicate
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Reasoning about shapes

* Inductively-defined algebraic datatypes are a key feature in modern
programming languages
Enable the expression of rich data structures - lists, trees, graphs, maps, etc.
* But, they also pose challenges for verification

Recursive structure
Important attributes are often not manifest in a constructor’s signature

4 E.g,length, sorted-ness, height, balance, membership, ordering, dominance,
symmetry, etc.

Polymorphism and higher-order functions

¢ Tension

desire expressive specifications over the shape of data

but want automated verification of their correctness
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Example

rev : {1 : ’a list} — {v: ’a list | v = rev’ (1)}

fun rev [] = []
| rev x::xs = concat (rev xs) [X]
reasoning about rev’ likely as complex as
directly reasoning about rev
We want

To reason structurally about the order of elements in the list

Without appealing to an operational definition of how that ordering is realized
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Example

inOrder : {t:x tree} — {l:x list]|y}

Q@ & forward-order(l)=in-order(t)
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Post-Order

postOrder : {t:X tree} — {l:x list|}

P & forward-order(l)= post-order(t)
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Reverse

rev : {ll:a list} — {l12:x list]|p}

(p & backward-order(l2)=forward-order(l1l)
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We need ...

Type refinements () to be predicates over an

\expressze{ language.

Should serve as a common medium to express fine-grained
shapes of data structures, such as in-order, pre-order, post

order, forward-order, and backward-order



Observe ...

What is common among pre-order, post-order,
forward-order, and backward-order!



Observe ...

What is common among pre-order, post-order,
forward-order, and backward-order!

All are orders



Observe ...

What is common among pre-order, post-order,
forward-order, and backward-order!

All are orders

Expressible as binary relations
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For Example ...

in-order of t is binary relation such
that: in-order(xi,xj) © i <]

Rio(t) = {(xi,x5) | i <)

fwd-order of 1 is binary relation such
that: fwd-order(xi,xj) & i <j - i’

Reo(l) = {(xyx) | 1<)
= If list 1 contains elements of tree t in pre-order, then

Rfo (1) = Rio (t)
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post-order on tree t and backward-
order on list 1 are also binary relations,
hence set of pairs.

Of supplementary value are unary
membership relations:

G:ree—members)

R}I/n(t) = Rim() = {x1, x2, x3, x4, x5}

(list—members)

x]1 | x2 | x3|x4| x5
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More Relations <1 | x2 | x3

x4

x5

post-order on tree t and backward-

order on list 1 are also binary relations,
hence set of pairs.

Of supplementary value are unary
membership relations:

G:ree—members)

R}I/n(t) = Rim() = {x1, x2, x3, x4, x5}

(list—members) t
Rtm(1t) = {x1, x2, x3)

They let us write assertions over binary relations like Rpo

Rtm(lt) X {X4: } C Rio (t)
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cross-product, is capable of expressing fine-
grained shapes.

Equality (=) and Subset inclusion (C) predicates over
relations let us relate shapes of data structures.
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The Language of Relations ...

... with relational operators, such as union and
cross-product, is capable of expressing fine-
grained shapes.

Equality (=) and Subset inclusion (C) predicates over
relations let us relate shapes of data structures.

For Eg:
relation Reo(x::xs) = ({x} X Rmem(xs)) U Reo(xs)

relation Rio(Tree(L,n,R)) =
(Rem(L) X {n}) U ({n} X Rw(R)) U Rioc(L) U Rio(R)

inOrder : {t:x tree} — {l:& list| Rfo(l)=Rio(t)}
tail : {l:x list} — {v:& list| Rfo(v) CRo()}
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However ...

... to facilitate compositional type checking and
verification, we should be able to ascribe relational
types to polymorphic and higher-order functions.

For eg:
id : X — X
pairMap : 6¢*x — (x — B) — B*B

Relational types for polymorphic and higher-order
functions must be general enough to relate different
shapes at different call sites.
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Relational Parameters

plist /B treée  j4 can take arguments
1d X — O of unknown shape
-V

Denote with an abstract relation

Shape of the argument is also the shape of its result

d: {x:0} — {y:&x | Shape(y) = Shape(x)}

p
(P) Id : {x:0} — {y:x | p(y) =p(x)}

\

Relationally parametric type of id



A Parametric Type of pairMap ...

... by focusing on possible shape invariance between «
and B

(Px,PB) pairMap : {X1:0}*{x2:(}
— ({x:0} — {y:B | PB(Y) = Pax(x)})

— {y1:B | PB(Y1) = Pa(x1)}
*{y2:B | PR(Y2) = Pa(x2)}



A Parametric Type of pairMap ...

... by focusing on possible shape invariance between «
and B

(Px,PB) pailrMap : {X1:0}*{x2:(}

——
denote shapes ({x:a} — {y:B | PB(Y) = Pax(x%)})
of & and B3,

respectively — {y1:B | Pp(y1) = Pa(X1)}

*{y2:B | PR(Y2) = Pa(x2)}



A Parametric Type of pairMap ...

... by focusing on possible shape invariance between «

and f
(Pax,PB) pairMap : {x1:0(}*{xz:0(}\
——
denote shapes ({x:a} — {y:B | PB(Y) = Pax(x%)})
of & and B3,
respectively — {y1:B | Pp(y1) = Pa(X1)}

*{y2:B | PR(Y2) = Pa(x2)}



A Parametric Type of pairMap ...

... by focusing on possible shape invariance between «

and B
(Pax,PB) pairMap : {xlza}*{xzza}\
"'ﬂ_l

denote shapes ({x:a} — {y:B | PB(Y) = Pax(x%)})
of & and B,
respectively — {y1:B | PB(Y1) = Pa(X1)}

*{y2:B | PR(Y2) = Pa(x2)}

\

gets propagated to result type



A Parametric Type of pairMap ...
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A Parametric Type of pairMap ...

(Px,PB) palrMap : {xX1:0}*{x2:(}

For eg:
(11, 12)
%

X lists

— ({x:0} — {y:B | PB(Y) = Pa(x)})

— {y1:B | pPp(Y1) = Ppax(x1)}
*{y2:B | PR(Y2) = Pa(x2)}

-

-

explicit instantiation
of
relational parameters

~

J

pairMap (Rio, Rfo) (ti1,t2) inOrder
\'ﬂ_I

X trees
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treefoldl £ i (Node n) = £ i n
| £ i (Tree left node right) =
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val inOrder = fn t => treefoldl t []
(fn acc => fn x => acc ++ [X])

inOrder t = @ @
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treefoldl £ i (Node n) = £ i n
| £ i (Tree left node right) =
treefoldl £ (f (treefoldl f i left) node) right

val inOrder = fn t => treefoldl t []
(fn acc => fn x => acc ++ [X])

f [x1,x3,x3] @

inOrder t = @



treefoldl

treefoldl £ i (Node n) = £ i n
| £ i (Tree left node right) =
treefoldl £ (f (treefoldl f i left) node) right

val inOrder = fn t => treefoldl t []
(fn acc => fn x => acc ++ [X])

inOrder t = f [xlnﬂ,&%x4]<:>



treefoldl

treefoldl £ i (Node n) = £ i n
| £ i (Tree left node right) =
treefoldl £ (f (treefoldl f i left) node) right

val inOrder = fn t => treefoldl t []
(fn acc => fn x => acc ++ [X])

1nOrder t = [x1,x3,x3,x4,%x5]
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treefoldl

treefoldl : a tree - B » (B » a - B) » B

/

folds a tree from left to
right in in-order

A parametric type can be constructed to relate in-order
(Rio) on & tree to some notion of order captured by an
abstract relation (po) on

(Po) treefoldl: {t:X tree} — ..

— {v: B | Po(v) =Rio(t)}
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A Parametric Type of treefoldl

(Pm,Po) treefoldl: {t:x tree} — {b:B | pn(b)=2
A Po(b)=2}
— ({xs:B} — {x:} —
{viB | Pn(V)=pPn(xs) U {x}
A Po(V)=Pm(xs)x{x} U po(xs)})

— {y: B | po(¥) =Rio(t) A pu(y)=Rtm(t) }

Order invariant: relates Membership invariant:
in-order on the tree to a relates membership of the
notion of order on 3 tree to a notion of

membership of B



1nOrder using treefoldl

val inOrder = fn t => treefoldl (Rim,Rfo) t []
(fn acc => fn x => acc ++ [X])
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1nOrder using treefoldl

Explicit relational parameter

instantiation
A

val inOrder = fn t => treefoldlr(le,Rfo‘) t []
(fn acc => fn x => acc ++ [X])

has type

{t:x tree} — ... — {v: & list | Rfo(Vv) =Rio(t)
/\le(V)=Rt,m(t) }
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Parametric Relations

id and pairMap are functions parameterized over
relations

Relations can also be parameterized over relations

27T ._fwd-order
For Eg: ST N
Relates elements of 1 TN
e’ o PRV |
Rfo(l) = {x}* Rim(xs) U Rfo(xs) < s

l Generalize — - ~

Rfo[p](1) = p(X)* Rim [p](xs) U Rio [p](XS)

~

Relates different things for different instantiations of p

Note: If Rig(X)={x} then Rfo[Rid](l) relates elements like non-
parametric Rfo(1)
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Y We know:

/ \ Rio(t) = {((x1, y1), x5, y1) | 1 <j)

(X2,y2 (X5Iy5

/ "\

(x1,y1l) (x3,y3)

~ 7
v

t
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For Example ...

We know:
(x4,y4)
/ \ Rio(t) = {((x1, y1), (x5, 5)) | 1 =]}
(x2,y2) (x5,y5) By Definition:

/ \\ Rio[p](t) = {(p(x1, ), P (X5, 7)) | 1 =]}
(x1,y1) (x%3,y3) Let Rrst be a relation on pairs, such that
b M ~ Rest(X,y) = {x]

Now:

Rio[Rfst](t) = {Rest (X1, Y1), Best (%5, ¥3)) | 1 < j)
& Rio[Rest](b) = {(x1,x3) | 1 =]}

in-order among first-components of pairs in t
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For Example ...

treeMap : & tree — (& — B) — P tree

Relational type ... | ... by focusing on possible shape invariance
between & and P (a la pairMap)

\/
(P, Pp) treeMap : {ti1:X tree}

— ({x:0} = {y:B | PB(Y) = Pax(%)})
— {t2:P tree | ? }

Rio(t2) ¥ Rio(t1)

Rio(ti) is a relation on elements of tj

and elements of t1 # elements of t»
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treeMap : & tree — (& — B) — P tree

Relational type ... | ... by focusing on possible shape invariance
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For Example ...

treeMap (Rrfst, Rig): {t1:X tree}
— ({x:a} = {y:B | Rid(y) = Rest(x)})
— {t2:P tree | Rio[Rid](t2) = Rio[Rfst] (t1)}

4,vy4
{8 i) fn (a,b) => a

/ \ treeMa tl'f-s.? / \
p 8

(x2,y2) (x5,y5) A x5

/ \ QRfst, RidD / \

(x1,yl) (x3,¥3)

L - 4 Y
N~ A4

t1 Let Rig(x) = {x} be ldentity relation t2

in-order among elements of t2 = in-order among first components of
pairs in t1
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* Relational language to express shapes

* Functions parameterized on relations Expressive type

language

* Relations parameterized on relations |

For type-based shape analysis to be effective, we
need type checking with such expressive types to
be decidable and practical



Decidability

Type checking is decidable if type refinements can
be encoded in a decidable logic

' {v:T|¢1} ' {v:T|¢2}
[Tr] &= [T,v:T] = [¢1] = [¢2]
F'FA{v:T| |1} <:{v:T|d2}

i.e., if ¢ is a type refinement, then[#] must be an
expression in a decidable logic



For the language of relational type refinements,
there exists such an encoding into a decidable
subset of many-sorted first-order logic (MSFOL)

=

Type checking is decidable



MSFOL

Many-sorted first-order logic is a syntactic
extension of first-order logic with sorts (types)

We consider a ciecidable subseg with ...

~~V

Effectively Propositional (EPR) MSFOL

Uninterpreted sorts To. T1. ...

Sorted variables X:To, yeT1, ...

Sorted uninterpreted boolean

, , R:To—bool ...
functions (relations)

Prenex quantification over V(k:To).R(x,k) & x=Kk,
sorted variables : :
1(J:To).£(y) =
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Encoding ...

... is translation of artifacts of type refinement
language into the EPR fragment of MSFOL.

int, &, X 1list To, T1, T2, ...
X:X, l:x 1list x:T; 1:T5
translate ' '
Rfo, Rfo: T2+«T1+T1—bo0O1,
Rim Rim: T>+T1—bool

V(k,J:T1).Bro(l,k,]J) &

Rfo(D={x} x Rim(x8) (k=x) A Rim(xs,j)

but ...



Encoding ...

... parametric relations is not straightforward

Parametric 5
Relations

translate

(there are no parametric
Rio[Refst], relations in FOL)
Rfo[Rid]
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A fully instantiated parametric relation can be
defined in terms of its component non-parametric

relations
For eg:

We have already seen:
(x4,y4)

/ \ Rio(t) = {((x1, y1), (x5, 7)) | 1 < j)

(x2,y2) (X3,¥3) R»fst\ ﬁfst

/ . RiolRese](t) = (G, %) | 1<)

(x1,y1l) (x3,y3)

¥ J
v

t

The set Rio[Rfst](t) is obtained from
the set Rio(t) by mapping both
components of pairs with Rist
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A fully instantiated parametric relation can be
defined in terms of its component non-parametric

For eg:

(x4,y4)

/ N\

(x2,y2) (X3,¥3)

AN

(x1,y1l) (x3,y3)

)

'

t

relations

We have already seen:

Rio(t) = {((x1, y1), (x5, 39) | 1 =< j)
Rio[Rest](t) = {(x1, x3) | 1 < j)
&

(Rio[Rest](t) =

{(Brst(a), Best(b)) | (a,b) € Rio(t)} y

V

Defines Rio[Rfst] in terms of Rio and Rist




Encoding ...

... parametric relations by defining them in terms of
their component non-parametric relations

Parametric Fresh uninterpreted relations
Relations Roand Ri
translate
+
Rio Rest], Quantified propositions
Rfo[ Riq] defining Roand R in terms of

existing uninterpreted relations
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Off-the-shelf SMT solvers (eg: Z3) are efficient
decision procedures for the EPR fragment of
MSFOL.

CATALYST =

A
A practical type checker can be constructed by

encoding type refinements in MSFOL and using SMT
solvers for subtype checking.
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v o ooX
\ / VC Encode @ /
Z3 < « Relational VC
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Validation

Lists

rev

concat
map
foldl
foldr

exists
filter

Okasaki
trees

inOrder
preOrder
postOrder
treefoldl
treefoldr
balance
rotate

Functional
Graphs

folds
traversals
maps

4

MLton
functions

alpha-rename
substitutions
SSA



Related Work

GADTs in OCaml and Haskell

Type refinements in F*

Abstract refinements in Liquid Types
Logical Relations

Shape analysis for higher-order control flow



Conclusions

Marriage of a relational specification language with a
dependent type system capable of describing
expressive structural invariants of functional data

structures

Future Directions

 Extensions to deal with non-inductive structures

 Automated inference

* Basis for “lightweight” verified compilation

https://github.com/tycon/catalyst
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