
Relational Refinement Types for
Higher-Order Shape Transformers

Suresh Jagannathan
Joint work with Gowtham Kaki

A Shape Analysis for Functional Programs

In imperative settings, shape analysis is concerned with
discovering/verifying the shape of a pointer into memory

p

p = LinkedList

A Shape Analysis for Functional (Typed) Programs

In functional languages, we have have types

p p : α list

p = Cons(.,Cons(., Nil))

p = B(B(L,.,L),.,B(L,.,L)

p
p : α tree

In functional languages, we have have types

A Shape Analysis for Functional (Typed) Programs

f : α tree ⟶ α list

f

In functional languages, we have have types

f : α tree ⟶ α list

A Shape Analysis for Functional (Typed) Programs

In functional languages, we have have types

f : α tree ⟶ α list

A Shape Analysis for Functional (Typed) Programs

In functional languages, we have have types

f : α tree ⟶ α list

How can we use types to express precise shape
information?

f : {t:α tree} ⟶ {l:α list|φ}

φ ⇔ SomeShape(l)≡SomeOtherShape(t)
type refinement predicate

A Shape Analysis for Functional (Typed) Programs

7

 for Functional Programs A Reasoning about shapes for Functional
Programs

• Inductively-defined algebraic datatypes are a key feature in modern
programming languages
★ Enable the expression of rich data structures - lists, trees, graphs, maps, etc.

7

 for Functional Programs A Reasoning about shapes for Functional
Programs

• Inductively-defined algebraic datatypes are a key feature in modern
programming languages
★ Enable the expression of rich data structures - lists, trees, graphs, maps, etc.

• But, they also pose challenges for verification
★ Recursive structure
★Important attributes are often not manifest in a constructor’s signature

✦ E.g., length, sorted-ness, height, balance, membership, ordering, dominance,
symmetry, etc.

★ Polymorphism and higher-order functions

7

 for Functional Programs A Reasoning about shapes for Functional
Programs

• Inductively-defined algebraic datatypes are a key feature in modern
programming languages
★ Enable the expression of rich data structures - lists, trees, graphs, maps, etc.

• But, they also pose challenges for verification
★ Recursive structure
★Important attributes are often not manifest in a constructor’s signature

✦ E.g., length, sorted-ness, height, balance, membership, ordering, dominance,
symmetry, etc.

★ Polymorphism and higher-order functions

• Tension
★ desire expressive specifications over the shape of data

★ but want automated verification of their correctness

7

 for Functional Programs A Reasoning about shapes for Functional
Programs

8

A Example for Functional Programs

A Relational Framework for Higher-Order Shape Analysis

Gowtham Kaki Suresh Jagannathan
Purdue University

{gkaki,suresh}@cs.purdue.edu

Abstract
We propose the integration of a relational specification framework
within a dependent type system capable of verifying complex in-
variants over the shapes of algebraic datatypes. Our approach is
based on the observation that structural properties of such datatypes
can often be naturally expressed as inductively-defined relations
over the recursive structure evident in their definitions. By inter-
preting constructor applications (abstractly) in a relational domain,
we can define expressive relational abstractions for a variety of
complex data structures, whose structural and shape invariants can
be automatically verified. Our specification language also allows
for definitions of parametric relations for polymorphic data types
that enable highly composable specifications and naturally gener-
alizes to higher-order polymorphic functions.

We describe an algorithm that translates relational specifications
into a decidable fragment of first-order logic that can be efficiently
discharged by an SMT solver. We have implemented these ideas
in a type checker called CATALYST that is incorporated within
the MLton SML compiler. Experimental results and case studies
indicate that our verification strategy is both practical and effective.

Categories and Subject Descriptors D.3.2 [Language Classifi-
cations]: Applicative (Functional) Languages; F.3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and Reason-
ing about Programs; D.2.4 [Software Engineering]: Software/Pro-
gram Verification

Keywords Relational Specifications; Inductive Relations; Para-
metric Relations; Dependent Types; Decidability; Standard ML

1. Introduction
Dependent types are well-studied vehicles capable of expressing
rich program invariants. A prototypical example is the type of
a list that is indexed by a natural number denoting its length.
Length-indexed lists can be written in several mainstream lan-
guages that support some form of dependent typing, including
GHC Haskell [24], F* [8, 22], and OCaml [17]. For example, the
following Haskell signatures specify how the length of the result
list for append and rev relate to their arguments:

append :: List a n -> List a m -> List a (Plus n m)
rev :: List a n -> List a n

While length-indexed lists capture stronger invariants over append ,
and rev than possible with just simple types, they still under-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICFP ’14, September 1–6, 2014, Gothenburg, Sweden.
Copyright c� 2014 ACM 978-1-4503-2873-9 /14/09. . . $15.00.
http://dx.doi.org/10.1145/10.1145/2628136.2628159

specify the intended behavior of these operations. For example, a
correctly written append function must additionally preserve the
order of its input lists; a function that incorrectly produces an out-
put list that is a permutation of its inputs would nonetheless satisfy
append ’s type as written above. Similarly, the identity function
would clearly satisfy the type given for rev ; a type that fully cap-
tures rev ’s behavior would also have to specify that the order of
elements in rev ’s output list is the inverse of the order of its input.
Is it possible to ascribe such expressive types to capture these kinds
of important shape properties, which can nonetheless be easily
stated, and efficiently checked?

One approach is to directly state desired behavior in type refine-
ments, as in the following signature:
rev : {l : ’a list} �! {⌫: ’a list | ⌫ = rev’(l)}
Here, rev’ represents some reference implementation of rev .
Checking rev ’s implementation against this refinement is tanta-
mount to proving the equivalence of rev and rev’ . Given the
undecidability of the general problem, expecting these types to be
machine checkable would require the definition of rev’ to closely
resemble rev ’s. For all but the most trivial of definitions, this ap-
proach is unlikely to be fruitful. An alternative approach is to de-
fine rev within a theorem prover, and directly assert and prove
properties on it - for example, that rev is involutive. Although
modern theorem provers support rich theories over datatypes like
lists, this strategy nonetheless requires that the program be fully
described in logic, and reasoned about by the solver in its entirety.
Thus, defining rev in this way also requires an equational defi-
nition of append , assuming the former is defined in terms of the
latter. For non-trivial programs, this may require equipping provers
with arbitrarily complex theories, whose combination may not be
decidable. Such a methodology also does not obviously address our
original goal of specifying rev ’s functional correctness, indepen-
dent of its definition; note that in the case of rev , involution does
not imply functional correctness. Clearly, the challenges in building
suitably typed definitions that let us reason about interesting shape
properties of a data structure are substantial.

Nonetheless, the way the length of a list is tracked using its
length-indexed type offers a useful hint about how we can reason
about its shape. Akin to the Nat domain that indexes a list type
with a length abstraction, we need an appropriate abstract domain
that we can use to help us reason about a list’s shape properties.
For instance, in the case of list reversal, the abstract domain should
allow us to structurally reason about the order of elements in the
input and output lists. A useful interpretation of a list order that
satisfies this requirement would be one that relates every element
in a list with every another element based on an ordering predicate
(e.g., occurs-before or occurs-after). By defining an exhaustive
enumeration of the set of all such pairs under this ordering, we
can effectively specify the total order of all elements in the list.
More precisely, observe that the notion of order can be broken down
to the level of a binary relation over elements in the list, with the

fun rev [] = []
 | rev x::xs = concat (rev xs) [x]

8

A Example for Functional Programs

A Relational Framework for Higher-Order Shape Analysis

Gowtham Kaki Suresh Jagannathan
Purdue University

{gkaki,suresh}@cs.purdue.edu

Abstract
We propose the integration of a relational specification framework
within a dependent type system capable of verifying complex in-
variants over the shapes of algebraic datatypes. Our approach is
based on the observation that structural properties of such datatypes
can often be naturally expressed as inductively-defined relations
over the recursive structure evident in their definitions. By inter-
preting constructor applications (abstractly) in a relational domain,
we can define expressive relational abstractions for a variety of
complex data structures, whose structural and shape invariants can
be automatically verified. Our specification language also allows
for definitions of parametric relations for polymorphic data types
that enable highly composable specifications and naturally gener-
alizes to higher-order polymorphic functions.

We describe an algorithm that translates relational specifications
into a decidable fragment of first-order logic that can be efficiently
discharged by an SMT solver. We have implemented these ideas
in a type checker called CATALYST that is incorporated within
the MLton SML compiler. Experimental results and case studies
indicate that our verification strategy is both practical and effective.

Categories and Subject Descriptors D.3.2 [Language Classifi-
cations]: Applicative (Functional) Languages; F.3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and Reason-
ing about Programs; D.2.4 [Software Engineering]: Software/Pro-
gram Verification

Keywords Relational Specifications; Inductive Relations; Para-
metric Relations; Dependent Types; Decidability; Standard ML

1. Introduction
Dependent types are well-studied vehicles capable of expressing
rich program invariants. A prototypical example is the type of
a list that is indexed by a natural number denoting its length.
Length-indexed lists can be written in several mainstream lan-
guages that support some form of dependent typing, including
GHC Haskell [24], F* [8, 22], and OCaml [17]. For example, the
following Haskell signatures specify how the length of the result
list for append and rev relate to their arguments:

append :: List a n -> List a m -> List a (Plus n m)
rev :: List a n -> List a n

While length-indexed lists capture stronger invariants over append ,
and rev than possible with just simple types, they still under-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICFP ’14, September 1–6, 2014, Gothenburg, Sweden.
Copyright c� 2014 ACM 978-1-4503-2873-9 /14/09. . . $15.00.
http://dx.doi.org/10.1145/10.1145/2628136.2628159

specify the intended behavior of these operations. For example, a
correctly written append function must additionally preserve the
order of its input lists; a function that incorrectly produces an out-
put list that is a permutation of its inputs would nonetheless satisfy
append ’s type as written above. Similarly, the identity function
would clearly satisfy the type given for rev ; a type that fully cap-
tures rev ’s behavior would also have to specify that the order of
elements in rev ’s output list is the inverse of the order of its input.
Is it possible to ascribe such expressive types to capture these kinds
of important shape properties, which can nonetheless be easily
stated, and efficiently checked?

One approach is to directly state desired behavior in type refine-
ments, as in the following signature:
rev : {l : ’a list} �! {⌫: ’a list | ⌫ = rev’(l)}
Here, rev’ represents some reference implementation of rev .
Checking rev ’s implementation against this refinement is tanta-
mount to proving the equivalence of rev and rev’ . Given the
undecidability of the general problem, expecting these types to be
machine checkable would require the definition of rev’ to closely
resemble rev ’s. For all but the most trivial of definitions, this ap-
proach is unlikely to be fruitful. An alternative approach is to de-
fine rev within a theorem prover, and directly assert and prove
properties on it - for example, that rev is involutive. Although
modern theorem provers support rich theories over datatypes like
lists, this strategy nonetheless requires that the program be fully
described in logic, and reasoned about by the solver in its entirety.
Thus, defining rev in this way also requires an equational defi-
nition of append , assuming the former is defined in terms of the
latter. For non-trivial programs, this may require equipping provers
with arbitrarily complex theories, whose combination may not be
decidable. Such a methodology also does not obviously address our
original goal of specifying rev ’s functional correctness, indepen-
dent of its definition; note that in the case of rev , involution does
not imply functional correctness. Clearly, the challenges in building
suitably typed definitions that let us reason about interesting shape
properties of a data structure are substantial.

Nonetheless, the way the length of a list is tracked using its
length-indexed type offers a useful hint about how we can reason
about its shape. Akin to the Nat domain that indexes a list type
with a length abstraction, we need an appropriate abstract domain
that we can use to help us reason about a list’s shape properties.
For instance, in the case of list reversal, the abstract domain should
allow us to structurally reason about the order of elements in the
input and output lists. A useful interpretation of a list order that
satisfies this requirement would be one that relates every element
in a list with every another element based on an ordering predicate
(e.g., occurs-before or occurs-after). By defining an exhaustive
enumeration of the set of all such pairs under this ordering, we
can effectively specify the total order of all elements in the list.
More precisely, observe that the notion of order can be broken down
to the level of a binary relation over elements in the list, with the

fun rev [] = []
 | rev x::xs = concat (rev xs) [x]

reasoning about rev’ likely as complex as
directly reasoning about rev

8

A Example for Functional Programs

A Relational Framework for Higher-Order Shape Analysis

Gowtham Kaki Suresh Jagannathan
Purdue University

{gkaki,suresh}@cs.purdue.edu

Abstract
We propose the integration of a relational specification framework
within a dependent type system capable of verifying complex in-
variants over the shapes of algebraic datatypes. Our approach is
based on the observation that structural properties of such datatypes
can often be naturally expressed as inductively-defined relations
over the recursive structure evident in their definitions. By inter-
preting constructor applications (abstractly) in a relational domain,
we can define expressive relational abstractions for a variety of
complex data structures, whose structural and shape invariants can
be automatically verified. Our specification language also allows
for definitions of parametric relations for polymorphic data types
that enable highly composable specifications and naturally gener-
alizes to higher-order polymorphic functions.

We describe an algorithm that translates relational specifications
into a decidable fragment of first-order logic that can be efficiently
discharged by an SMT solver. We have implemented these ideas
in a type checker called CATALYST that is incorporated within
the MLton SML compiler. Experimental results and case studies
indicate that our verification strategy is both practical and effective.

Categories and Subject Descriptors D.3.2 [Language Classifi-
cations]: Applicative (Functional) Languages; F.3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and Reason-
ing about Programs; D.2.4 [Software Engineering]: Software/Pro-
gram Verification

Keywords Relational Specifications; Inductive Relations; Para-
metric Relations; Dependent Types; Decidability; Standard ML

1. Introduction
Dependent types are well-studied vehicles capable of expressing
rich program invariants. A prototypical example is the type of
a list that is indexed by a natural number denoting its length.
Length-indexed lists can be written in several mainstream lan-
guages that support some form of dependent typing, including
GHC Haskell [24], F* [8, 22], and OCaml [17]. For example, the
following Haskell signatures specify how the length of the result
list for append and rev relate to their arguments:

append :: List a n -> List a m -> List a (Plus n m)
rev :: List a n -> List a n

While length-indexed lists capture stronger invariants over append ,
and rev than possible with just simple types, they still under-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICFP ’14, September 1–6, 2014, Gothenburg, Sweden.
Copyright c� 2014 ACM 978-1-4503-2873-9 /14/09. . . $15.00.
http://dx.doi.org/10.1145/10.1145/2628136.2628159

specify the intended behavior of these operations. For example, a
correctly written append function must additionally preserve the
order of its input lists; a function that incorrectly produces an out-
put list that is a permutation of its inputs would nonetheless satisfy
append ’s type as written above. Similarly, the identity function
would clearly satisfy the type given for rev ; a type that fully cap-
tures rev ’s behavior would also have to specify that the order of
elements in rev ’s output list is the inverse of the order of its input.
Is it possible to ascribe such expressive types to capture these kinds
of important shape properties, which can nonetheless be easily
stated, and efficiently checked?

One approach is to directly state desired behavior in type refine-
ments, as in the following signature:
rev : {l : ’a list} �! {⌫: ’a list | ⌫ = rev’(l)}
Here, rev’ represents some reference implementation of rev .
Checking rev ’s implementation against this refinement is tanta-
mount to proving the equivalence of rev and rev’ . Given the
undecidability of the general problem, expecting these types to be
machine checkable would require the definition of rev’ to closely
resemble rev ’s. For all but the most trivial of definitions, this ap-
proach is unlikely to be fruitful. An alternative approach is to de-
fine rev within a theorem prover, and directly assert and prove
properties on it - for example, that rev is involutive. Although
modern theorem provers support rich theories over datatypes like
lists, this strategy nonetheless requires that the program be fully
described in logic, and reasoned about by the solver in its entirety.
Thus, defining rev in this way also requires an equational defi-
nition of append , assuming the former is defined in terms of the
latter. For non-trivial programs, this may require equipping provers
with arbitrarily complex theories, whose combination may not be
decidable. Such a methodology also does not obviously address our
original goal of specifying rev ’s functional correctness, indepen-
dent of its definition; note that in the case of rev , involution does
not imply functional correctness. Clearly, the challenges in building
suitably typed definitions that let us reason about interesting shape
properties of a data structure are substantial.

Nonetheless, the way the length of a list is tracked using its
length-indexed type offers a useful hint about how we can reason
about its shape. Akin to the Nat domain that indexes a list type
with a length abstraction, we need an appropriate abstract domain
that we can use to help us reason about a list’s shape properties.
For instance, in the case of list reversal, the abstract domain should
allow us to structurally reason about the order of elements in the
input and output lists. A useful interpretation of a list order that
satisfies this requirement would be one that relates every element
in a list with every another element based on an ordering predicate
(e.g., occurs-before or occurs-after). By defining an exhaustive
enumeration of the set of all such pairs under this ordering, we
can effectively specify the total order of all elements in the list.
More precisely, observe that the notion of order can be broken down
to the level of a binary relation over elements in the list, with the

fun rev [] = []
 | rev x::xs = concat (rev xs) [x]

We want
★ To reason structurally about the order of elements in the list

★ Without appealing to an operational definition of how that ordering is realized

reasoning about rev’ likely as complex as
directly reasoning about rev

Example

x4

x2 x5

x1 x3

Example

x4

x2 x5

x1 x3

x1 x2 x3 x4 x5

inOrder : {t:α tree} ⟶ {l:α list|φ}

φ ⇔ forward-order(l)=in-order(t)

Post-Order
x4

x2 x5

x1 x3

Post-Order

x1 x3 x2 x5 x4

postOrder : {t:α tree} ⟶ {l:α list|φ}

φ ⇔ forward-order(l)= post-order(t)

x4

x2 x5

x1 x3

x4

x2 x5

x1 x3 x4

x2

x5

x1 x3

Rotate

x4

x2 x5

x1 x3 x4

x2

x5

x1 x3

x1 x2 x3 x4 x5 x1 x4 x5 x3 x2

rotate : {t1:α tree} ⟶ {t2:α tree|φ}

Rotate

φ ⇔ in-order(t1)= post-order(t2)

x1 x2 x3 x4 x5 x5 x4 x3 x2 x1

Reverse

x1 x2 x3 x4 x5 x5 x4 x3 x2 x1

Reverse

rev : {l1:α list} ⟶ {l2:α list|φ}

φ ⇔ backward-order(l2)=forward-order(l1)

We need ...

Type refinements (φ) to be predicates over an
expressive language.

Should serve as a common medium to express fine-grained
shapes of data structures, such as in-order, pre-order, post-

order, forward-order, and backward-order

We need ...

Type refinements (φ) to be predicates over an
expressive language.

Observe ...

What is common among pre-order, post-order,
forward-order, and backward-order?

Observe ...

What is common among pre-order, post-order,
forward-order, and backward-order?

All are orders

Observe ...

What is common among pre-order, post-order,
forward-order, and backward-order?

All are orders

Expressible as binary relations

x4

For Example ...

t x5
x2

x3x1

x4

For Example ...
in-order of t is binary relation such

that: in-order(xi,xj) ⇔ i ≤ j
t x5

x2

x3x1

x4

For Example ...
in-order of t is binary relation such

that: in-order(xi,xj) ⇔ i ≤ j
t x5

x2

x3x1
Rio(t)

x4

For Example ...
in-order of t is binary relation such

that: in-order(xi,xj) ⇔ i ≤ j
t

= {(xi,xj) | i ≤ j}

x5
x2

x3x1
Rio(t)

x4

For Example ...
in-order of t is binary relation such

that: in-order(xi,xj) ⇔ i ≤ j
t

= {(xi,xj) | i ≤ j}

x5
x2

x3x1

l

x1 x2 x3 x4 x5

Rio(t)

x4

For Example ...
in-order of t is binary relation such

that: in-order(xi,xj) ⇔ i ≤ j
t

= {(xi,xj) | i ≤ j}

x5
x2

x3x1

l

x1 x2 x3 x4 x5fwd-order of l is binary relation such
that: fwd-order(xi,xj) ⇔ i ≤ j

Rio(t)

x4

For Example ...
in-order of t is binary relation such

that: in-order(xi,xj) ⇔ i ≤ j
t

= {(xi,xj) | i ≤ j}

x5
x2

x3x1

l

x1 x2 x3 x4 x5fwd-order of l is binary relation such
that: fwd-order(xi,xj) ⇔ i ≤ j

Rio(t)

Rfo(l)

x4

For Example ...
in-order of t is binary relation such

that: in-order(xi,xj) ⇔ i ≤ j
t

= {(xi,xj) | i ≤ j}

x5
x2

x3x1

l

x1 x2 x3 x4 x5

 = {(xi,xj) | i ≤ j}

fwd-order of l is binary relation such
that: fwd-order(xi,xj) ⇔ i ≤ j

Rio(t)

Rfo(l)

x4

For Example ...
in-order of t is binary relation such

that: in-order(xi,xj) ⇔ i ≤ j
t

= {(xi,xj) | i ≤ j}

x5
x2

x3x1

l

x1 x2 x3 x4 x5

 = {(xi,xj) | i ≤ j}

If list l contains elements of tree t in pre-order, then

Rfo(l) = Rio(t)

⇒

fwd-order of l is binary relation such
that: fwd-order(xi,xj) ⇔ i ≤ j

Rio(t)

Rfo(l)

More Relations
post-order on tree t and backward-
order on list l are also binary relations,
hence set of pairs. x4

x2 x5

x1 x3

x1 x2 x3 x4 x5

t

l

More Relations
post-order on tree t and backward-
order on list l are also binary relations,
hence set of pairs. x4

x2 x5

x1 x3

x1 x2 x3 x4 x5

t

l

Of supplementary value are unary
membership relations:

{x1, x2, x3, x4, x5} Rtm(t) = Rlm(l) =

tree-members

list-members

More Relations
post-order on tree t and backward-
order on list l are also binary relations,
hence set of pairs. x4

x2 x5

x1 x3

x1 x2 x3 x4 x5

t

l

Of supplementary value are unary
membership relations:

{x1, x2, x3, x4, x5} Rtm(t) = Rlm(l) =

tree-members

list-members

They let us write assertions over binary relations like Rpo

More Relations
post-order on tree t and backward-
order on list l are also binary relations,
hence set of pairs. x4

x2 x5

x1 x3

x1 x2 x3 x4 x5

t

l

Of supplementary value are unary
membership relations:

{x1, x2, x3, x4, x5} Rtm(t) = Rlm(l) =

tree-members

list-members

They let us write assertions over binary relations like Rpo

lt

More Relations
post-order on tree t and backward-
order on list l are also binary relations,
hence set of pairs. x4

x2 x5

x1 x3

x1 x2 x3 x4 x5

t

l

Of supplementary value are unary
membership relations:

{x1, x2, x3, x4, x5} Rtm(t) = Rlm(l) =

tree-members

list-members

They let us write assertions over binary relations like Rpo

lt

Rtm(lt) = {x1, x2, x3}

More Relations
post-order on tree t and backward-
order on list l are also binary relations,
hence set of pairs. x4

x2 x5

x1 x3

x1 x2 x3 x4 x5

t

l

Of supplementary value are unary
membership relations:

{x1, x2, x3, x4, x5} Rtm(t) = Rlm(l) =

tree-members

list-members

They let us write assertions over binary relations like Rpo

Rtm(lt)ₒ{x4} ⊂ Rio(t)

lt

Rtm(lt) = {x1, x2, x3}

The Language of Relations ...

... with relational operators, such as union and
cross-product, is capable of expressing fine-

grained shapes.

Rfo(xs)[

The Language of Relations ...

... with relational operators, such as union and
cross-product, is capable of expressing fine-

grained shapes.

Equality (=) and Subset inclusion (⊂) predicates over
relations let us relate shapes of data structures.

Rfo(xs)[

The Language of Relations ...

... with relational operators, such as union and
cross-product, is capable of expressing fine-

grained shapes.

Equality (=) and Subset inclusion (⊂) predicates over
relations let us relate shapes of data structures.

For Eg:

Rfo(xs)[

The Language of Relations ...

... with relational operators, such as union and
cross-product, is capable of expressing fine-

grained shapes.

Equality (=) and Subset inclusion (⊂) predicates over
relations let us relate shapes of data structures.

For Eg:

relation Rfo(x::xs) = ({x} Rmem(xs))⇥
relation Rio(Tree(L,n,R)) =
(Rtm(L) X {n}) ({n} X Rtm(R)) U Rio(L) U Rio(R) [

Rfo(xs)[

The Language of Relations ...

... with relational operators, such as union and
cross-product, is capable of expressing fine-

grained shapes.

Equality (=) and Subset inclusion (⊂) predicates over
relations let us relate shapes of data structures.

For Eg:

inOrder : {t:α tree} ⟶ {l:α list| Rfo(l) = Rio(t)}
tail : {l:α list} ⟶ {v:α list| Rfo(v) ⊂ Rfo(l)}

relation Rfo(x::xs) = ({x} Rmem(xs))⇥
relation Rio(Tree(L,n,R)) =
(Rtm(L) X {n}) ({n} X Rtm(R)) U Rio(L) U Rio(R) [

Rfo(xs)[

However ...

... to facilitate compositional type checking and
verification, we should be able to ascribe relational
types to polymorphic and higher-order functions.

However ...

... to facilitate compositional type checking and
verification, we should be able to ascribe relational
types to polymorphic and higher-order functions.

For eg:

id : α ⟶ α
pairMap : α*α ⟶ (α ⟶ β) ⟶ β*β

However ...

... to facilitate compositional type checking and
verification, we should be able to ascribe relational
types to polymorphic and higher-order functions.

For eg:

id : α ⟶ α
pairMap : α*α ⟶ (α ⟶ β) ⟶ β*β

Relational types for polymorphic and higher-order
functions must be general enough to relate different

shapes at different call sites.

id : α ⟶ α

id : α ⟶ α

id : α ⟶ α

id : α ⟶ α
id can take arguments

of unknown shape
β list β tree

id : α ⟶ α
id can take arguments

of unknown shape
β list β tree

Shape of the argument is also the shape of its result

id : {x:α} ⟶ {y:α | Shape(y) = Shape(x)}

id : α ⟶ α

Relational Parameters

id can take arguments
of unknown shape

β list β tree

Shape of the argument is also the shape of its result

id : {x:α} ⟶ {y:α | Shape(y) = Shape(x)}

id : α ⟶ α

Relational Parameters

id can take arguments
of unknown shape

β list β tree

Shape of the argument is also the shape of its result

Denote with an abstract relation

id : {x:α} ⟶ {y:α | Shape(y) = Shape(x)}
ρ

id : α ⟶ α

Relational Parameters

id can take arguments
of unknown shape

β list β tree

Shape of the argument is also the shape of its result

Denote with an abstract relation

id : {x:α} ⟶ {y:α | Shape(y) = Shape(x)}
ρ

 Id : {x:α} ⟶ {y:α | ρ(y) = ρ(x)}(ρ)

id : α ⟶ α

Relational Parameters

id can take arguments
of unknown shape

β list β tree

Shape of the argument is also the shape of its result

Denote with an abstract relation

id : {x:α} ⟶ {y:α | Shape(y) = Shape(x)}
ρ

 Id : {x:α} ⟶ {y:α | ρ(y) = ρ(x)}

Relationally parametric type of id

(ρ)

A Parametric Type of pairMap ...

... by focusing on possible shape invariance between α
and β

(ρα,ρβ) pairMap : {x1:α}*{x2:α}

 ⟶ {y1:β | ρβ(y1) = ρα(x1)}

⟶ ({x:α} ⟶ {y:β | ρβ(y) = ρα(x)})

{y2:β | ρβ(y2) = ρα(x2)}*

A Parametric Type of pairMap ...

... by focusing on possible shape invariance between α
and β

(ρα,ρβ) pairMap : {x1:α}*{x2:α}

 ⟶ {y1:β | ρβ(y1) = ρα(x1)}

⟶ ({x:α} ⟶ {y:β | ρβ(y) = ρα(x)})

{y2:β | ρβ(y2) = ρα(x2)}*

denote shapes 
of α and β,
respectively

A Parametric Type of pairMap ...

... by focusing on possible shape invariance between α
and β

(ρα,ρβ) pairMap : {x1:α}*{x2:α}

 ⟶ {y1:β | ρβ(y1) = ρα(x1)}

⟶ ({x:α} ⟶ {y:β | ρβ(y) = ρα(x)})

{y2:β | ρβ(y2) = ρα(x2)}*

denote shapes 
of α and β,
respectively

A Parametric Type of pairMap ...

... by focusing on possible shape invariance between α
and β

(ρα,ρβ) pairMap : {x1:α}*{x2:α}

 ⟶ {y1:β | ρβ(y1) = ρα(x1)}

⟶ ({x:α} ⟶ {y:β | ρβ(y) = ρα(x)})

{y2:β | ρβ(y2) = ρα(x2)}*

denote shapes 
of α and β,
respectively

gets propagated to result type

A Parametric Type of pairMap ...

(ρα,ρβ) pairMap : {x1:α}*{x2:α}

 ⟶ {y1:β | ρβ(y1) = ρα(x1)}

⟶ ({x:α} ⟶ {y:β | ρβ(y) = ρα(x)})

{y2:β | ρβ(y2) = ρα(x2)}*

For eg:

(l1, l2) = pairMap (Rio, Rfo) (t1, t2) inOrder

α lists α trees

A Parametric Type of pairMap ...

(ρα,ρβ) pairMap : {x1:α}*{x2:α}

 ⟶ {y1:β | ρβ(y1) = ρα(x1)}

⟶ ({x:α} ⟶ {y:β | ρβ(y) = ρα(x)})

{y2:β | ρβ(y2) = ρα(x2)}*

For eg:

(l1, l2) = pairMap (Rio, Rfo) (t1, t2) inOrder

α lists α trees
explicit instantiation  

of 
relational parameters

treefoldl

x4

x2

x1 x3

inOrder t = x5

val inOrder = fn t => treefoldl t []
 (fn acc => fn x => acc ++ [x])

treefoldl f i (Node n) = f i n
 | f i (Tree left node right) =
 treefoldl f (f (treefoldl f i left) node) right

treefoldl

x4

x2

x1 x3f []

inOrder t = x5

val inOrder = fn t => treefoldl t []
 (fn acc => fn x => acc ++ [x])

treefoldl f i (Node n) = f i n
 | f i (Tree left node right) =
 treefoldl f (f (treefoldl f i left) node) right

treefoldl

x4

x2

x3

f [x1] inOrder t = x5

val inOrder = fn t => treefoldl t []
 (fn acc => fn x => acc ++ [x])

treefoldl f i (Node n) = f i n
 | f i (Tree left node right) =
 treefoldl f (f (treefoldl f i left) node) right

treefoldl

x4

x3f [x1,x2]

inOrder t = x5

val inOrder = fn t => treefoldl t []
 (fn acc => fn x => acc ++ [x])

treefoldl f i (Node n) = f i n
 | f i (Tree left node right) =
 treefoldl f (f (treefoldl f i left) node) right

treefoldl

x4f [x1,x3,x3]

inOrder t = x5

val inOrder = fn t => treefoldl t []
 (fn acc => fn x => acc ++ [x])

treefoldl f i (Node n) = f i n
 | f i (Tree left node right) =
 treefoldl f (f (treefoldl f i left) node) right

treefoldl

f [x1,x3,x3,x4] inOrder t = x5

val inOrder = fn t => treefoldl t []
 (fn acc => fn x => acc ++ [x])

treefoldl f i (Node n) = f i n
 | f i (Tree left node right) =
 treefoldl f (f (treefoldl f i left) node) right

treefoldl

[x1,x3,x3,x4,x5] inOrder t =

val inOrder = fn t => treefoldl t []
 (fn acc => fn x => acc ++ [x])

treefoldl f i (Node n) = f i n
 | f i (Tree left node right) =
 treefoldl f (f (treefoldl f i left) node) right

treefoldl

folds a tree from left to  
right in in-order

A parametric type can be constructed to relate in-order
(Rio) on α tree to some notion of order captured by an

abstract relation (ρo) on β

treefoldl

folds a tree from left to  
right in in-order

A parametric type can be constructed to relate in-order
(Rio) on α tree to some notion of order captured by an

abstract relation (ρo) on β

(ρo) treefoldl: {t:α tree} ⟶ ...

⟶ {v: β | ρo(v) = Rio(t)}

treefoldl

folds a tree from left to  
right in in-order

(ρm,ρo) treefoldl: {t:α tree} ⟶ {b:β | ρm(b)=∅

⟶ {y: β | ρo(y) = Rio(t) ∧ ρm(y) = Rtm(t) }

⟶ ({xs:β} ⟶ {x:α} ⟶

 ρo(v) = ρm(xs)×{x} ∪ ρo(xs)})
 {v:β | ρm(v) = ρm(xs) ∪ {x}

∧

∧ ρo(b)=∅}

A Parametric Type of treefoldl

(ρm,ρo) treefoldl: {t:α tree} ⟶ {b:β | ρm(b)=∅

⟶ {y: β | ρo(y) = Rio(t) ∧ ρm(y) = Rtm(t) }

⟶ ({xs:β} ⟶ {x:α} ⟶

 ρo(v) = ρm(xs)×{x} ∪ ρo(xs)})
 {v:β | ρm(v) = ρm(xs) ∪ {x}

∧

∧ ρo(b)=∅}

A Parametric Type of treefoldl

Order invariant: relates 
in-order on the tree to a

notion of order on β

(ρm,ρo) treefoldl: {t:α tree} ⟶ {b:β | ρm(b)=∅

⟶ {y: β | ρo(y) = Rio(t) ∧ ρm(y) = Rtm(t) }

⟶ ({xs:β} ⟶ {x:α} ⟶

 ρo(v) = ρm(xs)×{x} ∪ ρo(xs)})
 {v:β | ρm(v) = ρm(xs) ∪ {x}

∧

∧ ρo(b)=∅}

A Parametric Type of treefoldl

Membership invariant:
relates membership of the

tree to a notion of
membership of β

Order invariant: relates 
in-order on the tree to a

notion of order on β

(ρm,ρo) treefoldl: {t:α tree} ⟶ {b:β | ρm(b)=∅

⟶ {y: β | ρo(y) = Rio(t) ∧ ρm(y) = Rtm(t) }

⟶ ({xs:β} ⟶ {x:α} ⟶

 ρo(v) = ρm(xs)×{x} ∪ ρo(xs)})
 {v:β | ρm(v) = ρm(xs) ∪ {x}

∧

∧ ρo(b)=∅}

A Parametric Type of treefoldl

Membership invariant:
relates membership of the

tree to a notion of
membership of β

Order invariant: relates 
in-order on the tree to a

notion of order on β

inOrder using treefoldl

val inOrder = fn t => treefoldl (Rlm,Rfo) t []
 (fn acc => fn x => acc ++ [x])

inOrder using treefoldl

Explicit relational parameter  
instantiation

val inOrder = fn t => treefoldl (Rlm,Rfo) t []
 (fn acc => fn x => acc ++ [x])

inOrder using treefoldl

Explicit relational parameter  
instantiation

has type

{t:α tree} ⟶ ... ⟶ {v: α list | Rfo(v) = Rio(t)
∧ Rlm(v) = Rtm(t) }

val inOrder = fn t => treefoldl (Rlm,Rfo) t []
 (fn acc => fn x => acc ++ [x])

id and pairMap are functions parameterized over
relations

Parametric Relations

id and pairMap are functions parameterized over
relations

Relations can also be parameterized over relations

Parametric Relations

id and pairMap are functions parameterized over
relations

Relations can also be parameterized over relations

For Eg:

Rfo(l) = {x}ₒ Rlm(xs) ∪ Rfo(xs) x xs

fwd-order

l

Parametric Relations

id and pairMap are functions parameterized over
relations

Relations can also be parameterized over relations

For Eg:

Rfo(l) = {x}ₒ Rlm(xs) ∪ Rfo(xs) x xs

fwd-order

l

Relates elements of l

Parametric Relations

id and pairMap are functions parameterized over
relations

Relations can also be parameterized over relations

For Eg:

Rfo(l) = {x}ₒ Rlm(xs) ∪ Rfo(xs) x xs

fwd-order

l
Rfo[ρ](l) = ρ(x)ₒ Rlm [ρ](xs) ∪ Rfo [ρ](xs)

Generalize

Relates elements of l

Parametric Relations

id and pairMap are functions parameterized over
relations

Relations can also be parameterized over relations

For Eg:

Rfo(l) = {x}ₒ Rlm(xs) ∪ Rfo(xs) x xs

fwd-order

l
Rfo[ρ](l) = ρ(x)ₒ Rlm [ρ](xs) ∪ Rfo [ρ](xs)

Generalize

Relates elements of l

Relates different things for different instantiations of ρ

Parametric Relations

id and pairMap are functions parameterized over
relations

Relations can also be parameterized over relations

For Eg:

Rfo(l) = {x}ₒ Rlm(xs) ∪ Rfo(xs) x xs

fwd-order

l
Rfo[ρ](l) = ρ(x)ₒ Rlm [ρ](xs) ∪ Rfo [ρ](xs)

Generalize

Relates elements of l

Relates different things for different instantiations of ρ
Note: If Rid(x)={x} then Rfo[Rid](l) relates elements like non-

parametric Rfo(l)

Parametric Relations

For Example ...

For Example ...

(x4,y4)

(x2,y2)

(x3,y3)(x1,y1)

(x5,y5)

t

We know:
Rio(t) = {((xi, yi), (xj, yj)) | i ≤ j}

For Example ...

(x4,y4)

(x2,y2)

(x3,y3)(x1,y1)

(x5,y5)

t

We know:

By Definition:

Rio(t) = {((xi, yi), (xj, yj)) | i ≤ j}

Rio[ρ](t) = {(ρ(xi, yi), ρ (xj, yj)) | i ≤ j}

For Example ...

(x4,y4)

(x2,y2)

(x3,y3)(x1,y1)

(x5,y5)

t

Let Rfst be a relation on pairs, such that
Rfst(x,y) = {x}

We know:

By Definition:

Rio(t) = {((xi, yi), (xj, yj)) | i ≤ j}

Rio[ρ](t) = {(ρ(xi, yi), ρ (xj, yj)) | i ≤ j}

For Example ...

(x4,y4)

(x2,y2)

(x3,y3)(x1,y1)

(x5,y5)

t

Let Rfst be a relation on pairs, such that
Rfst(x,y) = {x}

We know:

By Definition:

Rio[Rfst](t) = {Rfst(xi, yi), Rfst (xj, yj)) | i ≤ j}
Now:

Rio(t) = {((xi, yi), (xj, yj)) | i ≤ j}

Rio[ρ](t) = {(ρ(xi, yi), ρ (xj, yj)) | i ≤ j}

Rio[Rfst](t) = {(xi,xj) | i ≤ j} ⇔

For Example ...

(x4,y4)

(x2,y2)

(x3,y3)(x1,y1)

(x5,y5)

t

Let Rfst be a relation on pairs, such that
Rfst(x,y) = {x}

We know:

By Definition:

Rio[Rfst](t) = {Rfst(xi, yi), Rfst (xj, yj)) | i ≤ j}
Now:

Rio(t) = {((xi, yi), (xj, yj)) | i ≤ j}

Rio[ρ](t) = {(ρ(xi, yi), ρ (xj, yj)) | i ≤ j}

Rio[Rfst](t) = {(xi,xj) | i ≤ j} ⇔
in-order among first-components of pairs in t

For Example ...

treeMap : α tree ⟶ (α ⟶ β) ⟶ β tree

For Example ...

(ρα,ρβ) treeMap : {t1:α tree}

⟶ ({x:α} ⟶ {y:β | ρβ(y) = ρα(x)})

treeMap : α tree ⟶ (α ⟶ β) ⟶ β tree

For Example ...

... by focusing on possible shape invariance  
between α and β (a la pairMap)

Relational type ...

(ρα,ρβ) treeMap : {t1:α tree}

⟶ ({x:α} ⟶ {y:β | ρβ(y) = ρα(x)})

treeMap : α tree ⟶ (α ⟶ β) ⟶ β tree

For Example ...

... by focusing on possible shape invariance  
between α and β (a la pairMap)

Relational type ...

(ρα,ρβ) treeMap : {t1:α tree}

 ⟶ {t2:β tree | ? }
⟶ ({x:α} ⟶ {y:β | ρβ(y) = ρα(x)})

treeMap : α tree ⟶ (α ⟶ β) ⟶ β tree

For Example ...

... by focusing on possible shape invariance  
between α and β (a la pairMap)

Relational type ...

(ρα,ρβ) treeMap : {t1:α tree}

 ⟶ {t2:β tree | ? }
⟶ ({x:α} ⟶ {y:β | ρβ(y) = ρα(x)})

treeMap : α tree ⟶ (α ⟶ β) ⟶ β tree

For Example ...

... by focusing on possible shape invariance  
between α and β (a la pairMap)

Relational type ...

Rio(t2) = Rio(t1)

Rio(ti) is a relation on elements of ti  
and elements of t1 ≠ elements of t2

(ρα,ρβ) treeMap : {t1:α tree}

⟶ ({x:α} ⟶ {y:β | ρβ(y) = ρα(x)})

treeMap : α tree ⟶ (α ⟶ β) ⟶ β tree

For Example ...

... by focusing on possible shape invariance  
between α and β (a la pairMap)

Relational type ...

 ⟶ {t2:β tree | Rio[ρβ](t2) = Rio[ρα](t1)}

(ρα,ρβ) treeMap : {t1:α tree}

⟶ ({x:α} ⟶ {y:β | ρβ(y) = ρα(x)})

treeMap : α tree ⟶ (α ⟶ β) ⟶ β tree

For Example ...

... by focusing on possible shape invariance  
between α and β (a la pairMap)

Relational type ...

 ⟶ {t2:β tree | Rio[ρβ](t2) = Rio[ρα](t1)}

Parametric in-order relation (Rio[ρ]) is not necessarily a relation over elements.

(ρα,ρβ) treeMap : {t1:α tree}

⟶ ({x:α} ⟶ {y:β | ρβ(y) = ρα(x)})

For Example ...

 ⟶ {t2:β tree | Rio[ρβ](t2) = Rio[ρα](t1)}

(ρα,ρβ) treeMap : {t1:α tree}
⟶ ({x:α} ⟶ {y:β | ρβ(y) = ρα(x)})

For Example ...

 ⟶ {t2:β tree | Rio[ρβ](t2) = Rio[ρα](t1)}

treeMap (Rfst, Rid): {t1:α tree}
⟶ ({x:α} ⟶ {y:β | Rid(y) = Rfst(x)})

For Example ...

 ⟶ {t2:β tree | Rio[Rid](t2) = Rio[Rfst](t1)}

t1 t2

treeMap t1 fst

(Rfst, Rid)

fn (a,b) => a

Let Rid(x) = {x} be Identity relation

(x4,y4)

(x5,y5)(x2,y2)

(x1,y1) (x3,y3)

x4

x2 x5

x1 x3

treeMap (Rfst, Rid): {t1:α tree}
⟶ ({x:α} ⟶ {y:β | Rid(y) = Rfst(x)})

For Example ...

 ⟶ {t2:β tree | Rio[Rid](t2) = Rio[Rfst](t1)}

in-order among elements of t2 = in-order among first components of
pairs in t1

t1 t2

treeMap t1 fst

(Rfst, Rid)

fn (a,b) => a

Let Rid(x) = {x} be Identity relation

(x4,y4)

(x5,y5)(x2,y2)

(x1,y1) (x3,y3)

x4

x2 x5

x1 x3

So far ...

So far ...

• Relational language to express shapes

So far ...

• Relational language to express shapes
• Functions parameterized on relations

So far ...

• Relational language to express shapes
• Functions parameterized on relations
• Relations parameterized on relations

So far ...

• Relational language to express shapes
• Functions parameterized on relations
• Relations parameterized on relations

Expressive type 
language

So far ...

• Relational language to express shapes
• Functions parameterized on relations
• Relations parameterized on relations

Expressive type 
language

For type-based shape analysis to be effective, we
need type checking with such expressive types to

be decidable and practical

Decidability

Type checking is decidable if type refinements can
be encoded in a decidable logic

i.e., if is a type refinement, then must be an
expression in a decidable logic

For the language of relational type refinements,
there exists such an encoding into a decidable

subset of many-sorted first-order logic (MSFOL)

Type checking is decidable

⇒

MSFOL
Many-sorted first-order logic is a syntactic

extension of first-order logic with sorts (types)

T0, T1, ...

x:T0, y:T1, ...

R:T0⟶bool ...

∀(k:T0).R(x,k) ⇔ x=k,  
∃(j:T0).f(y) = j

Uninterpreted sorts

Sorted variables

Sorted uninterpreted boolean
functions (relations)

Prenex quantification over
sorted variables

We consider a decidable subset with ...

Effectively Propositional (EPR) MSFOL

Encoding ...

... is translation of artifacts of type refinement
language into the EPR fragment of MSFOL.

translate

Encoding ...

T0, T1, T2, ...int, α, α list

... is translation of artifacts of type refinement
language into the EPR fragment of MSFOL.

translate

Encoding ...

T0, T1, T2, ...

x:T1, l:T2, ...

int, α, α list

x:α, l:α list

... is translation of artifacts of type refinement
language into the EPR fragment of MSFOL.

translate

Encoding ...

T0, T1, T2, ...

x:T1, l:T2, ...

Rfo:T2*T1*T1⟶bool,  
Rlm:T2*T1⟶bool

int, α, α list

x:α, l:α list

Rfo,  
Rlm

... is translation of artifacts of type refinement
language into the EPR fragment of MSFOL.

translate

Encoding ...

T0, T1, T2, ...

x:T1, l:T2, ...

Rfo:T2*T1*T1⟶bool,  
Rlm:T2*T1⟶bool

int, α, α list

x:α, l:α list

Rfo,  
Rlm

... is translation of artifacts of type refinement
language into the EPR fragment of MSFOL.

∀(k,j:T1).Rfo(l,k,j) ⇔  
Rfo(l)={x} ₒ Rlm(xs)

(k=x) ∧ Rlm(xs,j)

translate

Encoding ...

T0, T1, T2, ...

x:T1, l:T2, ...

Rfo:T2*T1*T1⟶bool,  
Rlm:T2*T1⟶bool

int, α, α list

x:α, l:α list

Rfo,  
Rlm

... is translation of artifacts of type refinement
language into the EPR fragment of MSFOL.

∀(k,j:T1).Rfo(l,k,j) ⇔  
Rfo(l)={x} ₒ Rlm(xs)

(k=x) ∧ Rlm(xs,j)

 but ...

translate

Rio[Rfst],

... parametric relations is not straightforward

Rfo[Rid]

Parametric
Relations ?

(there are no parametric  
relations in FOL)

Encoding ...

translate

For eg:

t

A fully instantiated parametric relation can be
defined in terms of its component non-parametric

relations

(x4,y4)

(x2,y2)

(x3,y3)(x1,y1)

(x5,y5)

For eg:

t

Rio(t) = {((xi, yi), (xj, yj)) | i ≤ j}

Rio[Rfst](t) = {(xi, xj) | i ≤ j}

We have already seen:

A fully instantiated parametric relation can be
defined in terms of its component non-parametric

relations

(x4,y4)

(x2,y2)

(x3,y3)(x1,y1)

(x5,y5)

For eg:

t

Rio(t) = {((xi, yi), (xj, yj)) | i ≤ j}

Rio[Rfst](t) = {(xi, xj) | i ≤ j}

We have already seen:

A fully instantiated parametric relation can be
defined in terms of its component non-parametric

relations

Rfst

(x4,y4)

(x2,y2)

(x3,y3)(x1,y1)

(x5,y5)

For eg:

t

Rio(t) = {((xi, yi), (xj, yj)) | i ≤ j}

Rio[Rfst](t) = {(xi, xj) | i ≤ j}

We have already seen:

A fully instantiated parametric relation can be
defined in terms of its component non-parametric

relations

Rfst Rfst

(x4,y4)

(x2,y2)

(x3,y3)(x1,y1)

(x5,y5)

For eg:

t

Rio(t) = {((xi, yi), (xj, yj)) | i ≤ j}

Rio[Rfst](t) = {(xi, xj) | i ≤ j}

We have already seen:

A fully instantiated parametric relation can be
defined in terms of its component non-parametric

relations

The set Rio[Rfst](t) is obtained from
the set Rio(t) by mapping both
components of pairs with Rfst

Rfst Rfst

(x4,y4)

(x2,y2)

(x3,y3)(x1,y1)

(x5,y5)

For eg:

(x4,y4)

(x2,y2)

(x3,y3)(x1,y1)

(x5,y5)

t

Rio(t) = {((xi, yi), (xj, yj)) | i ≤ j}
Rio[Rfst](t) = {(xi, xj) | i ≤ j}

We have already seen:

A fully instantiated parametric relation can be
defined in terms of its component non-parametric

relations

For eg:

(x4,y4)

(x2,y2)

(x3,y3)(x1,y1)

(x5,y5)

t

Rio(t) = {((xi, yi), (xj, yj)) | i ≤ j}
Rio[Rfst](t) = {(xi, xj) | i ≤ j}

We have already seen:

A fully instantiated parametric relation can be
defined in terms of its component non-parametric

relations

Rio[Rfst](t) =

⇔

{(Rfst(a), Rfst(b)) | (a,b) ∈ Rio(t)}

For eg:

(x4,y4)

(x2,y2)

(x3,y3)(x1,y1)

(x5,y5)

t

Rio(t) = {((xi, yi), (xj, yj)) | i ≤ j}
Rio[Rfst](t) = {(xi, xj) | i ≤ j}

We have already seen:

A fully instantiated parametric relation can be
defined in terms of its component non-parametric

relations

Rio[Rfst](t) =

⇔

{(Rfst(a), Rfst(b)) | (a,b) ∈ Rio(t)}

Defines Rio[Rfst] in terms of Rio and Rfst

Rio[Rfst],
Rfo[Rid]

Parametric
Relations

Fresh uninterpreted relations
R0 and R1

Quantified propositions
defining R0 and R1 in terms of

existing uninterpreted relations

+

... parametric relations by defining them in terms of
their component non-parametric relations

Encoding ...

translate

Off-the-shelf SMT solvers (eg: Z3) are efficient
decision procedures for the EPR fragment of

MSFOL.

Off-the-shelf SMT solvers (eg: Z3) are efficient
decision procedures for the EPR fragment of

MSFOL.

A practical type checker can be constructed by
encoding type refinements in MSFOL and using SMT

solvers for subtype checking.

⇒

Off-the-shelf SMT solvers (eg: Z3) are efficient
decision procedures for the EPR fragment of

MSFOL.

A practical type checker can be constructed by
encoding type refinements in MSFOL and using SMT

solvers for subtype checking.

⇒CATALYST

CATALYST

Implemented as extended type checking pass in  
MLton Standard ML compiler

SML Program  
+ 

spec

CATALYST

Implemented as extended type checking pass in  
MLton Standard ML compiler

SML Program  
+ 

spec
MLton  

Frontend

CATALYST

Implemented as extended type checking pass in  
MLton Standard ML compiler

Core ML  
+ 

spec

SML Program  
+ 

spec
MLton  

Frontend

VC Gen

CATALYST

Implemented as extended type checking pass in  
MLton Standard ML compiler

Core ML  
+ 

spec

Relational VC

SML Program  
+ 

spec
MLton  

Frontend

VC Gen

VC Encode

CATALYST

Implemented as extended type checking pass in  
MLton Standard ML compiler

Core ML  
+ 

spec

Relational VC

SML Program  
+ 

spec
MLton  

Frontend

VC Gen

VC Encode

CATALYST

Implemented as extended type checking pass in  
MLton Standard ML compiler

Core ML  
+ 

spec

Relational VC

Validation

Lists Okasaki  
trees

MLton 
functions

alpha-rename 
substitutions 

SSA

Functional  
Graphs

rev 
concat 

map 
foldl 
foldr 

exists 
filter 

inOrder 
preOrder 
postOrder 
treefoldl 
treefoldr 
balance 
rotate 
 

folds 
traversals 

maps 

. . .
. . .

. . .

Validation

Lists Okasaki  
trees

MLton 
functions

alpha-rename 
substitutions 

SSA

Functional  
Graphs

rev 
concat 

map 
foldl 
foldr 

exists 
filter 

inOrder 
preOrder 
postOrder 
treefoldl 
treefoldr 
balance 
rotate 
 

folds 
traversals 

maps 

. . .
. . .

. . .

Related Work

GADTs in OCaml and Haskell

Type refinements in F*

Abstract refinements in Liquid Types

Logical Relations

Shape analysis for higher-order control flow

Conclusions

Marriage of a relational specification language with a
dependent type system capable of describing
expressive structural invariants of functional data
structures

Future Directions

• Extensions to deal with non-inductive structures

• Automated inference

• Basis for “lightweight” verified compilation

https://github.com/tycon/catalyst

https://github.com/tycon/catalyst

