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In functional languages, we have have types

f : α tree ⟶ α list

How can we use types to express precise shape 
information?

f : {t:α tree} ⟶ {l:α list|φ}

φ ⇔ SomeShape(l)≡SomeOtherShape(t)
type refinement predicate

A Shape Analysis for Functional (Typed) Programs 
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★ Recursive structure 
★Important attributes are often not manifest in a constructor’s signature
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symmetry, etc.

★ Polymorphism and higher-order functions

• Tension
★ desire expressive specifications over the shape of data

★ but want automated verification of their correctness
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Abstract
We propose the integration of a relational specification framework
within a dependent type system capable of verifying complex in-
variants over the shapes of algebraic datatypes. Our approach is
based on the observation that structural properties of such datatypes
can often be naturally expressed as inductively-defined relations
over the recursive structure evident in their definitions. By inter-
preting constructor applications (abstractly) in a relational domain,
we can define expressive relational abstractions for a variety of
complex data structures, whose structural and shape invariants can
be automatically verified. Our specification language also allows
for definitions of parametric relations for polymorphic data types
that enable highly composable specifications and naturally gener-
alizes to higher-order polymorphic functions.

We describe an algorithm that translates relational specifications
into a decidable fragment of first-order logic that can be efficiently
discharged by an SMT solver. We have implemented these ideas
in a type checker called CATALYST that is incorporated within
the MLton SML compiler. Experimental results and case studies
indicate that our verification strategy is both practical and effective.

Categories and Subject Descriptors D.3.2 [Language Classifi-
cations]: Applicative (Functional) Languages; F.3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and Reason-
ing about Programs; D.2.4 [Software Engineering]: Software/Pro-
gram Verification

Keywords Relational Specifications; Inductive Relations; Para-
metric Relations; Dependent Types; Decidability; Standard ML

1. Introduction
Dependent types are well-studied vehicles capable of expressing
rich program invariants. A prototypical example is the type of
a list that is indexed by a natural number denoting its length.
Length-indexed lists can be written in several mainstream lan-
guages that support some form of dependent typing, including
GHC Haskell [24], F* [8, 22], and OCaml [17]. For example, the
following Haskell signatures specify how the length of the result
list for append and rev relate to their arguments:

append :: List a n -> List a m -> List a (Plus n m)
rev :: List a n -> List a n

While length-indexed lists capture stronger invariants over append ,
and rev than possible with just simple types, they still under-
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specify the intended behavior of these operations. For example, a
correctly written append function must additionally preserve the
order of its input lists; a function that incorrectly produces an out-
put list that is a permutation of its inputs would nonetheless satisfy
append ’s type as written above. Similarly, the identity function
would clearly satisfy the type given for rev ; a type that fully cap-
tures rev ’s behavior would also have to specify that the order of
elements in rev ’s output list is the inverse of the order of its input.
Is it possible to ascribe such expressive types to capture these kinds
of important shape properties, which can nonetheless be easily
stated, and efficiently checked?

One approach is to directly state desired behavior in type refine-
ments, as in the following signature:
rev : {l : ’a list} �! {⌫: ’a list | ⌫ = rev’(l)}
Here, rev’ represents some reference implementation of rev .
Checking rev ’s implementation against this refinement is tanta-
mount to proving the equivalence of rev and rev’ . Given the
undecidability of the general problem, expecting these types to be
machine checkable would require the definition of rev’ to closely
resemble rev ’s. For all but the most trivial of definitions, this ap-
proach is unlikely to be fruitful. An alternative approach is to de-
fine rev within a theorem prover, and directly assert and prove
properties on it - for example, that rev is involutive. Although
modern theorem provers support rich theories over datatypes like
lists, this strategy nonetheless requires that the program be fully
described in logic, and reasoned about by the solver in its entirety.
Thus, defining rev in this way also requires an equational defi-
nition of append , assuming the former is defined in terms of the
latter. For non-trivial programs, this may require equipping provers
with arbitrarily complex theories, whose combination may not be
decidable. Such a methodology also does not obviously address our
original goal of specifying rev ’s functional correctness, indepen-
dent of its definition; note that in the case of rev , involution does
not imply functional correctness. Clearly, the challenges in building
suitably typed definitions that let us reason about interesting shape
properties of a data structure are substantial.

Nonetheless, the way the length of a list is tracked using its
length-indexed type offers a useful hint about how we can reason
about its shape. Akin to the Nat domain that indexes a list type
with a length abstraction, we need an appropriate abstract domain
that we can use to help us reason about a list’s shape properties.
For instance, in the case of list reversal, the abstract domain should
allow us to structurally reason about the order of elements in the
input and output lists. A useful interpretation of a list order that
satisfies this requirement would be one that relates every element
in a list with every another element based on an ordering predicate
(e.g., occurs-before or occurs-after). By defining an exhaustive
enumeration of the set of all such pairs under this ordering, we
can effectively specify the total order of all elements in the list.
More precisely, observe that the notion of order can be broken down
to the level of a binary relation over elements in the list, with the

fun rev [] = []
  | rev x::xs = concat (rev xs) [x]
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specify the intended behavior of these operations. For example, a
correctly written append function must additionally preserve the
order of its input lists; a function that incorrectly produces an out-
put list that is a permutation of its inputs would nonetheless satisfy
append ’s type as written above. Similarly, the identity function
would clearly satisfy the type given for rev ; a type that fully cap-
tures rev ’s behavior would also have to specify that the order of
elements in rev ’s output list is the inverse of the order of its input.
Is it possible to ascribe such expressive types to capture these kinds
of important shape properties, which can nonetheless be easily
stated, and efficiently checked?

One approach is to directly state desired behavior in type refine-
ments, as in the following signature:
rev : {l : ’a list} �! {⌫: ’a list | ⌫ = rev’(l)}
Here, rev’ represents some reference implementation of rev .
Checking rev ’s implementation against this refinement is tanta-
mount to proving the equivalence of rev and rev’ . Given the
undecidability of the general problem, expecting these types to be
machine checkable would require the definition of rev’ to closely
resemble rev ’s. For all but the most trivial of definitions, this ap-
proach is unlikely to be fruitful. An alternative approach is to de-
fine rev within a theorem prover, and directly assert and prove
properties on it - for example, that rev is involutive. Although
modern theorem provers support rich theories over datatypes like
lists, this strategy nonetheless requires that the program be fully
described in logic, and reasoned about by the solver in its entirety.
Thus, defining rev in this way also requires an equational defi-
nition of append , assuming the former is defined in terms of the
latter. For non-trivial programs, this may require equipping provers
with arbitrarily complex theories, whose combination may not be
decidable. Such a methodology also does not obviously address our
original goal of specifying rev ’s functional correctness, indepen-
dent of its definition; note that in the case of rev , involution does
not imply functional correctness. Clearly, the challenges in building
suitably typed definitions that let us reason about interesting shape
properties of a data structure are substantial.

Nonetheless, the way the length of a list is tracked using its
length-indexed type offers a useful hint about how we can reason
about its shape. Akin to the Nat domain that indexes a list type
with a length abstraction, we need an appropriate abstract domain
that we can use to help us reason about a list’s shape properties.
For instance, in the case of list reversal, the abstract domain should
allow us to structurally reason about the order of elements in the
input and output lists. A useful interpretation of a list order that
satisfies this requirement would be one that relates every element
in a list with every another element based on an ordering predicate
(e.g., occurs-before or occurs-after). By defining an exhaustive
enumeration of the set of all such pairs under this ordering, we
can effectively specify the total order of all elements in the list.
More precisely, observe that the notion of order can be broken down
to the level of a binary relation over elements in the list, with the

fun rev [] = []
  | rev x::xs = concat (rev xs) [x]

reasoning about rev’ likely as complex as 
directly reasoning about rev
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specify the intended behavior of these operations. For example, a
correctly written append function must additionally preserve the
order of its input lists; a function that incorrectly produces an out-
put list that is a permutation of its inputs would nonetheless satisfy
append ’s type as written above. Similarly, the identity function
would clearly satisfy the type given for rev ; a type that fully cap-
tures rev ’s behavior would also have to specify that the order of
elements in rev ’s output list is the inverse of the order of its input.
Is it possible to ascribe such expressive types to capture these kinds
of important shape properties, which can nonetheless be easily
stated, and efficiently checked?

One approach is to directly state desired behavior in type refine-
ments, as in the following signature:
rev : {l : ’a list} �! {⌫: ’a list | ⌫ = rev’(l)}
Here, rev’ represents some reference implementation of rev .
Checking rev ’s implementation against this refinement is tanta-
mount to proving the equivalence of rev and rev’ . Given the
undecidability of the general problem, expecting these types to be
machine checkable would require the definition of rev’ to closely
resemble rev ’s. For all but the most trivial of definitions, this ap-
proach is unlikely to be fruitful. An alternative approach is to de-
fine rev within a theorem prover, and directly assert and prove
properties on it - for example, that rev is involutive. Although
modern theorem provers support rich theories over datatypes like
lists, this strategy nonetheless requires that the program be fully
described in logic, and reasoned about by the solver in its entirety.
Thus, defining rev in this way also requires an equational defi-
nition of append , assuming the former is defined in terms of the
latter. For non-trivial programs, this may require equipping provers
with arbitrarily complex theories, whose combination may not be
decidable. Such a methodology also does not obviously address our
original goal of specifying rev ’s functional correctness, indepen-
dent of its definition; note that in the case of rev , involution does
not imply functional correctness. Clearly, the challenges in building
suitably typed definitions that let us reason about interesting shape
properties of a data structure are substantial.

Nonetheless, the way the length of a list is tracked using its
length-indexed type offers a useful hint about how we can reason
about its shape. Akin to the Nat domain that indexes a list type
with a length abstraction, we need an appropriate abstract domain
that we can use to help us reason about a list’s shape properties.
For instance, in the case of list reversal, the abstract domain should
allow us to structurally reason about the order of elements in the
input and output lists. A useful interpretation of a list order that
satisfies this requirement would be one that relates every element
in a list with every another element based on an ordering predicate
(e.g., occurs-before or occurs-after). By defining an exhaustive
enumeration of the set of all such pairs under this ordering, we
can effectively specify the total order of all elements in the list.
More precisely, observe that the notion of order can be broken down
to the level of a binary relation over elements in the list, with the

fun rev [] = []
  | rev x::xs = concat (rev xs) [x]

We want
★ To reason structurally about the order of elements in the list

★ Without appealing to an operational definition of how that ordering is realized

reasoning about rev’ likely as complex as 
directly reasoning about rev
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Equality (=) and Subset inclusion (⊂) predicates over 
relations let us relate shapes of data structures. 

For Eg:

inOrder : {t:α tree} ⟶ {l:α list| Rfo(l) = Rio(t)}
tail : {l:α list} ⟶ {v:α list| Rfo(v) ⊂ Rfo(l)}

relation Rfo(x::xs)  = ({x}  Rmem(xs))⇥
relation Rio(Tree(L,n,R)) = 
(Rtm(L) X {n})   ({n} X Rtm(R)) U Rio(L) U Rio(R)   [

Rfo(xs)[
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verification, we should be able to ascribe relational 
types to polymorphic and higher-order functions.

For eg:

id : α ⟶ α 
pairMap : α*α ⟶ (α ⟶ β) ⟶ β*β

Relational types for polymorphic and higher-order 
functions must be general enough to relate different 

shapes at different call sites.
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id : α ⟶ α 

Relational Parameters

id can take arguments 
of unknown shape

β list β tree

Shape of the argument is also the shape of its result

Denote with an abstract relation

id : {x:α} ⟶ {y:α | Shape(y) = Shape(x)}
ρ

   Id : {x:α} ⟶ {y:α | ρ(y) = ρ(x)}

Relationally parametric type of id

(ρ)
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A Parametric Type of pairMap ...

(ρα,ρβ) pairMap : {x1:α}*{x2:α} 

  ⟶ {y1:β | ρβ(y1) = ρα(x1)}

⟶ ({x:α} ⟶ {y:β | ρβ(y) = ρα(x)})

{y2:β | ρβ(y2) = ρα(x2)}*

For eg:

(l1, l2) = pairMap (Rio, Rfo) (t1, t2) inOrder

α lists α trees
explicit instantiation  

of 
relational parameters



treefoldl

x4

x2

x1 x3

inOrder t = x5

val inOrder = fn t => treefoldl t []
      (fn acc => fn x => acc ++ [x])

treefoldl f i (Node n) = f i n
        | f i (Tree left node right) =
              treefoldl f (f (treefoldl f i left) node) right



treefoldl

x4

x2

x1 x3f [] 

inOrder t = x5

val inOrder = fn t => treefoldl t []
      (fn acc => fn x => acc ++ [x])

treefoldl f i (Node n) = f i n
        | f i (Tree left node right) =
              treefoldl f (f (treefoldl f i left) node) right



treefoldl

x4

x2

x3

f [x1] inOrder t = x5

val inOrder = fn t => treefoldl t []
      (fn acc => fn x => acc ++ [x])

treefoldl f i (Node n) = f i n
        | f i (Tree left node right) =
              treefoldl f (f (treefoldl f i left) node) right



treefoldl

x4

x3f [x1,x2] 

inOrder t = x5

val inOrder = fn t => treefoldl t []
      (fn acc => fn x => acc ++ [x])

treefoldl f i (Node n) = f i n
        | f i (Tree left node right) =
              treefoldl f (f (treefoldl f i left) node) right



treefoldl

x4f [x1,x3,x3] 

inOrder t = x5

val inOrder = fn t => treefoldl t []
      (fn acc => fn x => acc ++ [x])

treefoldl f i (Node n) = f i n
        | f i (Tree left node right) =
              treefoldl f (f (treefoldl f i left) node) right



treefoldl
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val inOrder = fn t => treefoldl t []
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[x1,x3,x3,x4,x5] inOrder t =

val inOrder = fn t => treefoldl t []
      (fn acc => fn x => acc ++ [x])

treefoldl f i (Node n) = f i n
        | f i (Tree left node right) =
              treefoldl f (f (treefoldl f i left) node) right
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A parametric type can be constructed to relate in-order 
(Rio) on α tree to some notion of order captured by an 

abstract relation (ρo) on β 

(ρo) treefoldl: {t:α tree} ⟶ ...  

⟶ {v: β | ρo(v) = Rio(t)}

treefoldl
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inOrder using treefoldl

Explicit relational parameter  
instantiation

val inOrder = fn t => treefoldl (Rlm,Rfo) t []
      (fn acc => fn x => acc ++ [x])



inOrder using treefoldl

Explicit relational parameter  
instantiation

has type

{t:α tree} ⟶ ...  ⟶ {v: α list | Rfo(v) = Rio(t) 
∧ Rlm(v) = Rtm(t) }

val inOrder = fn t => treefoldl (Rlm,Rfo) t []
      (fn acc => fn x => acc ++ [x])
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id and pairMap are functions parameterized over 
relations

Relations can also be parameterized over relations

For Eg:

Rfo(l) = {x}ₒ Rlm(xs)  ∪  Rfo(xs) x xs

fwd-order

l
Rfo[ρ](l) = ρ(x)ₒ Rlm [ρ](xs)  ∪  Rfo [ρ](xs)

Generalize

Relates elements of l

Relates different things for different instantiations of ρ
Note: If Rid(x)={x} then Rfo[Rid](l) relates elements like non-

parametric Rfo(l)

Parametric Relations
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(x4,y4)

(x2,y2)

(x3,y3)(x1,y1)

(x5,y5)

t

Let Rfst be a relation on pairs, such that
Rfst(x,y) = {x}

We know:

By Definition:

Rio[Rfst](t) = {Rfst(xi, yi), Rfst (xj, yj)) | i ≤ j} 
Now:

Rio(t) = {((xi, yi), (xj, yj)) | i ≤ j} 

Rio[ρ](t) = {(ρ(xi, yi), ρ (xj, yj)) | i ≤ j} 

Rio[Rfst](t) = {(xi,xj) | i ≤ j} ⇔
in-order among first-components of pairs in t
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(ρα,ρβ) treeMap : {t1:α tree} 

  ⟶ {t2:β tree | ?  }
⟶ ({x:α} ⟶ {y:β | ρβ(y) = ρα(x)})

treeMap : α tree ⟶ (α ⟶ β) ⟶ β tree

For Example ...

... by focusing on possible shape invariance  
between α and β (a la pairMap)

Relational type ...

Rio(t2) = Rio(t1)

Rio(ti) is a relation on elements of ti  
and elements of t1 ≠ elements of t2 
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(ρα,ρβ) treeMap : {t1:α tree} 

⟶ ({x:α} ⟶ {y:β | ρβ(y) = ρα(x)})

treeMap : α tree ⟶ (α ⟶ β) ⟶ β tree

For Example ...

... by focusing on possible shape invariance  
between α and β (a la pairMap)

Relational type ...

  ⟶ {t2:β tree | Rio[ρβ](t2) = Rio[ρα](t1)}

Parametric in-order relation (Rio[ρ]) is not necessarily a relation over elements. 
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(ρα,ρβ) treeMap : {t1:α tree} 
⟶ ({x:α} ⟶ {y:β | ρβ(y) = ρα(x)})

For Example ...

  ⟶ {t2:β tree | Rio[ρβ](t2) = Rio[ρα](t1)}



treeMap (Rfst, Rid): {t1:α tree} 
⟶ ({x:α} ⟶ {y:β | Rid(y) = Rfst(x)})

For Example ...

  ⟶ {t2:β tree | Rio[Rid](t2) = Rio[Rfst](t1)}

t1 t2

treeMap  t1 fst

(Rfst, Rid)

fn (a,b) => a

Let Rid(x) = {x} be Identity relation

(x4,y4)

(x5,y5)(x2,y2)

(x1,y1) (x3,y3)

x4

x2 x5

x1 x3



treeMap (Rfst, Rid): {t1:α tree} 
⟶ ({x:α} ⟶ {y:β | Rid(y) = Rfst(x)})

For Example ...

  ⟶ {t2:β tree | Rio[Rid](t2) = Rio[Rfst](t1)}

in-order among elements of t2 = in-order among first components of
pairs in t1

t1 t2

treeMap  t1 fst

(Rfst, Rid)

fn (a,b) => a

Let Rid(x) = {x} be Identity relation

(x4,y4)

(x5,y5)(x2,y2)

(x1,y1) (x3,y3)

x4

x2 x5

x1 x3
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So far ...

• Relational language to express shapes
• Functions parameterized on relations
• Relations parameterized on relations

Expressive type 
language

For type-based shape analysis to be effective, we 
need type checking with such expressive types to 

be decidable and practical



Decidability

Type checking is decidable if type refinements can 
be encoded in a decidable logic 

i.e., if    is a type refinement, then     must be an 
expression in a decidable logic



For the language of relational type refinements, 
there exists such an encoding into a decidable 

subset of many-sorted first-order logic (MSFOL)

Type checking is decidable

⇒



MSFOL
Many-sorted first-order logic is a syntactic 

extension of first-order logic with sorts (types)

T0, T1, ...

x:T0, y:T1, ...

R:T0⟶bool ...

∀(k:T0).R(x,k) ⇔ x=k,  
∃(j:T0).f(y) = j

Uninterpreted sorts

Sorted variables

Sorted uninterpreted boolean 
functions (relations)

Prenex quantification over 
sorted variables

We consider a decidable subset with ...

Effectively Propositional (EPR) MSFOL
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... is translation of artifacts of type refinement 
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Encoding ...

T0, T1, T2, ...

x:T1, l:T2, ...

Rfo:T2*T1*T1⟶bool,  
Rlm:T2*T1⟶bool

int, α, α list

x:α, l:α list

Rfo,  
Rlm

... is translation of artifacts of type refinement 
language into the EPR fragment of MSFOL.

∀(k,j:T1).Rfo(l,k,j) ⇔  
Rfo(l)={x} ₒ Rlm(xs) 

(k=x) ∧ Rlm(xs,j) 

 but ...

translate



Rio[Rfst],   

... parametric relations is not straightforward

Rfo[Rid]

Parametric 
Relations ?

(there are no parametric  
relations in FOL)

Encoding ...

translate
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Rio[Rfst],   
Rfo[Rid]

Parametric 
Relations

Fresh uninterpreted relations 
R0 and R1

Quantified propositions 
defining R0 and R1 in terms of 

existing uninterpreted relations

+

... parametric relations by defining them in terms of 
their component non-parametric relations

Encoding ...

translate
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Related Work

GADTs in OCaml and Haskell

Type refinements in F* 

Abstract refinements in Liquid Types

Logical Relations

Shape analysis for higher-order control flow



Conclusions

Marriage of a relational specification language with a
dependent type system capable of describing
expressive structural invariants of functional data 
structures

Future Directions

• Extensions to deal with non-inductive structures

• Automated inference

• Basis for “lightweight” verified compilation

https://github.com/tycon/catalyst

https://github.com/tycon/catalyst

