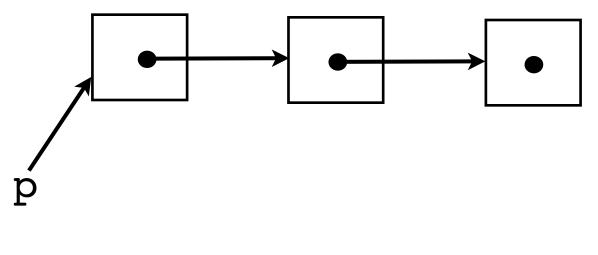
Relational Refinement Types for Higher-Order Shape Transformers

Suresh Jagannathan Joint work with Gowtham Kaki

In imperative settings, shape analysis is concerned with discovering/verifying the shape of a pointer into memory

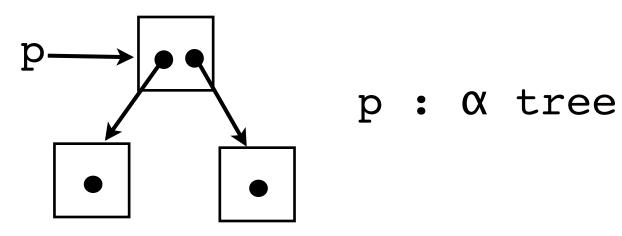


p = LinkedList

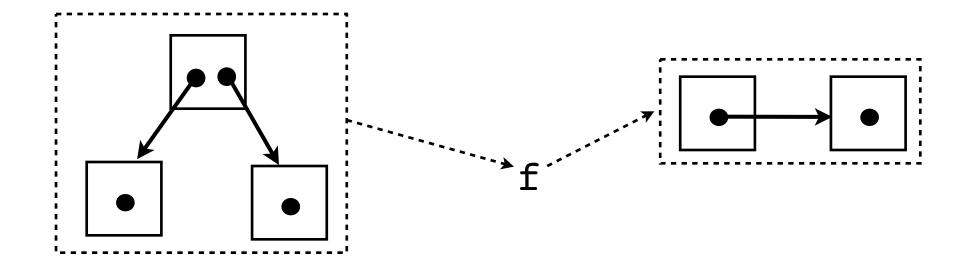
In functional languages, we have have types

p = Cons(.,Cons(., Nil)) $p \longrightarrow [\bullet] \qquad p : \alpha \text{ list}$

p = B(B(L, ., L), ., B(L, ., L))



In functional languages, we have have types



f : α tree $\rightarrow \alpha$ list

In functional languages, we have have types

f : α tree $\rightarrow \alpha$ list

In functional languages, we have have types

f : α tree $\rightarrow \alpha$ list

In functional languages, we have have types

f : α tree $\rightarrow \alpha$ list

How can we use types to express precise shape information?

f : {t: α tree} \rightarrow {l: α list $|\phi$ }

- Inductively-defined algebraic datatypes are a key feature in modern programming languages
 - **†** Enable the expression of rich data structures lists, trees, graphs, maps, etc.

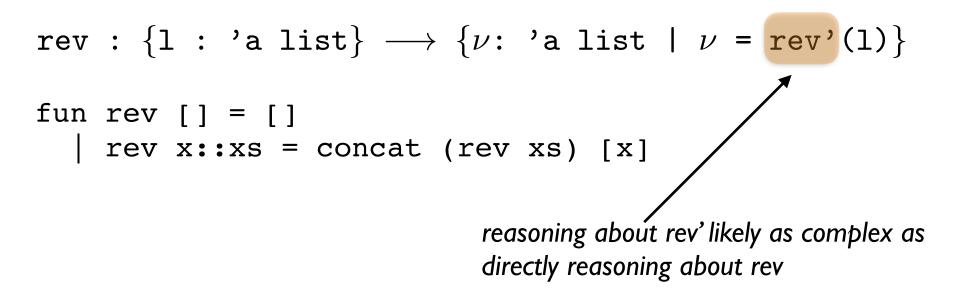
- Inductively-defined algebraic datatypes are a key feature in modern programming languages
 - **†** Enable the expression of rich data structures lists, trees, graphs, maps, etc.
- But, they also pose challenges for verification
 - ★ Recursive structure
 - \star Important attributes are often not manifest in a constructor's signature
 - E.g., length, sorted-ness, height, balance, membership, ordering, dominance, symmetry, etc.
 - **+** Polymorphism and higher-order functions

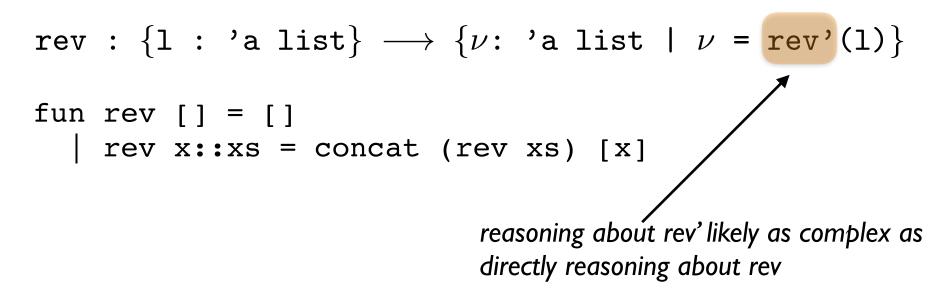
- Inductively-defined algebraic datatypes are a key feature in modern programming languages
 - **†** Enable the expression of rich data structures lists, trees, graphs, maps, etc.
- But, they also pose challenges for verification

★ Recursive structure

- **†**Important attributes are often not manifest in a constructor's signature
 - E.g., length, sorted-ness, height, balance, membership, ordering, dominance, symmetry, etc.
- **+** Polymorphism and higher-order functions
- Tension
 - \star desire expressive specifications over the shape of data
 - \star but want automated verification of their correctness

 $\begin{aligned} \texttt{rev} : \{\texttt{l} : \texttt{`a list}\} &\longrightarrow \{\nu: \texttt{`a list} \mid \nu = \texttt{rev'(l)} \} \\ \texttt{fun rev} [\texttt{]} = [\texttt{]} \\ \mid \texttt{rev x::xs} = \texttt{concat} (\texttt{rev xs}) [\texttt{x}] \end{aligned}$

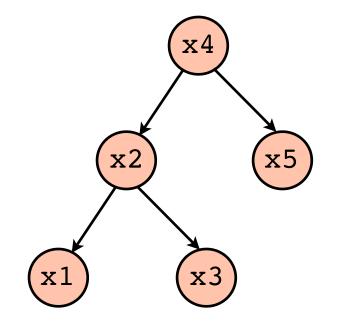


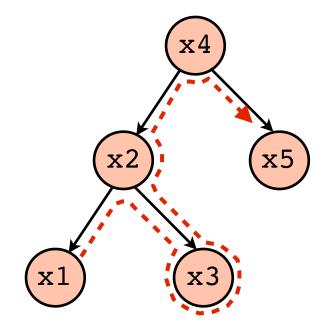


We want

 \star To reason structurally about the order of elements in the list

+ Without appealing to an operational definition of how that ordering is realized



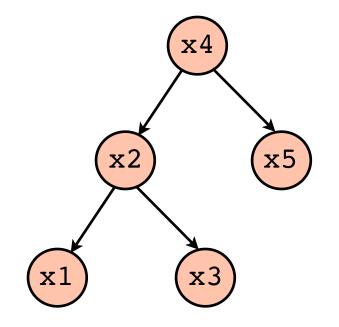


	x1	x2	x3	x4	x5		
•							

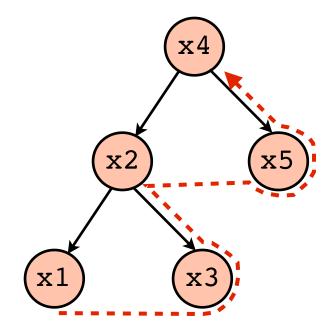
inOrder : {t: α tree} \rightarrow {l: α list $|\phi$ }

 $\phi \Leftrightarrow \text{forward-order(l)=in-order(t)}$

Post-Order



Post-Order

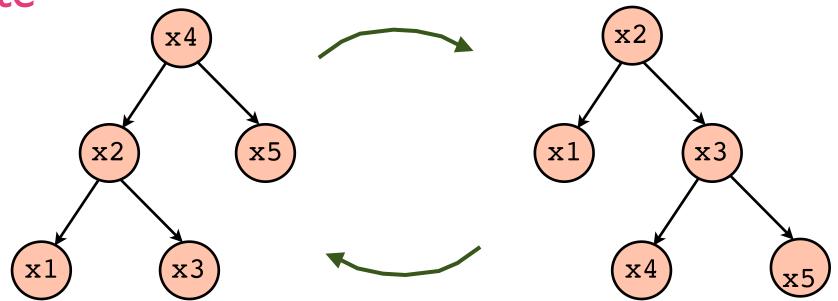


x1	x3	x2	x5	x4		

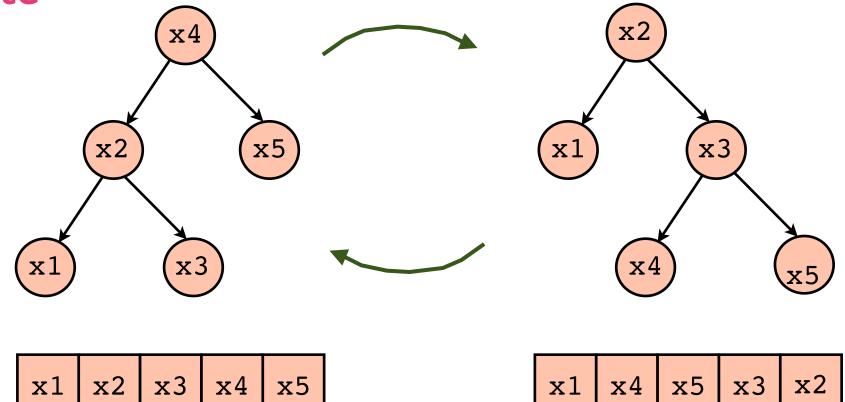
postOrder : {t: α tree} \rightarrow {l: α list $|\phi$ }

 $\phi \Leftrightarrow \text{forward-order(l)= post-order(t)}$

Rotate



Rotate



rotate : {t1: α tree} \rightarrow {t2: α tree | ϕ }

 $\varphi \Leftrightarrow \text{in-order(t1)} = \text{post-order(t2)}$

Reverse

x1	x2	x3	x4	x5
----	----	----	----	----

x5	x4	x3	x2	x1
----	----	----	----	----

Reverse

x2	x2 x1
	x1

rev : {l1: α list} \rightarrow {l2: α list| ϕ }

 $\phi \Leftrightarrow backward-order(12)=forward-order(11)$

Type refinements (ϕ) to be predicates over an expressive language.

Type refinements (φ) to be predicates over an **expressive language**.

Should serve as a common medium to express fine-grained shapes of data structures, such as in-order, pre-order, post-order, forward-order, and backward-order

What is common among pre-order, post-order, forward-order, and backward-order?

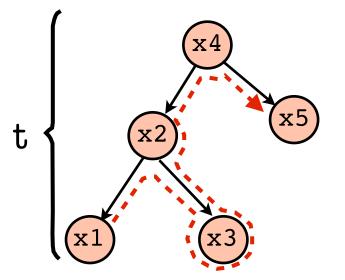
What is common among pre-order, post-order, forward-order, and backward-order?

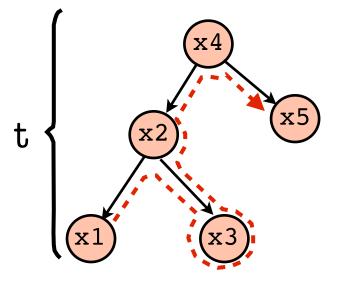
All are orders

What is common among pre-order, post-order, forward-order, and backward-order?

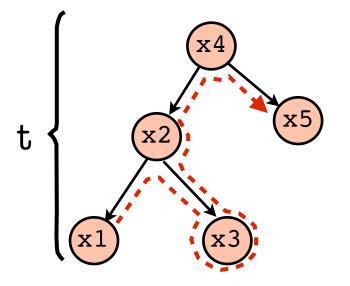
All are orders

Expressible as binary relations



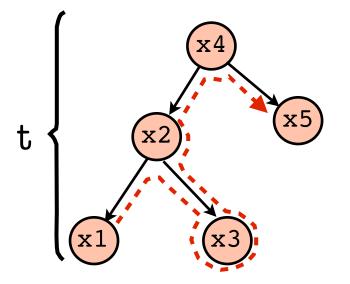


in-order of t is binary relation such that: in-order(x_i, x_j) $\Leftrightarrow i \leq j$



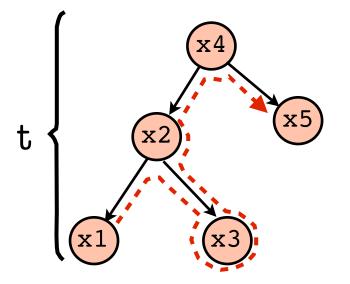
in-order of t is binary relation such that: in-order(x_i, x_j) $\Leftrightarrow i \leq j$

 $R_{i0}(t)$

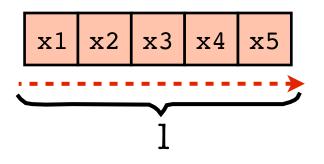


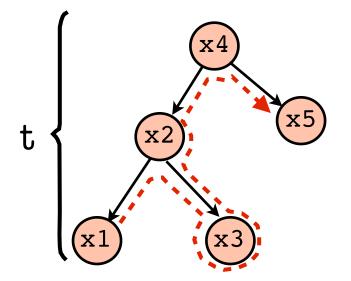
in-order of t is binary relation such that: in-order(x_i, x_j) $\Leftrightarrow i \leq j$

$$R_{i0}(t) = \{(x_i, x_j) \mid i \le j\}$$



$$R_{i0}(t) = \{(x_i, x_j) | i \le j\}$$

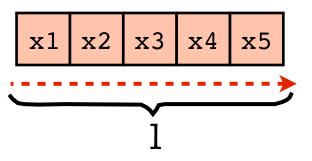


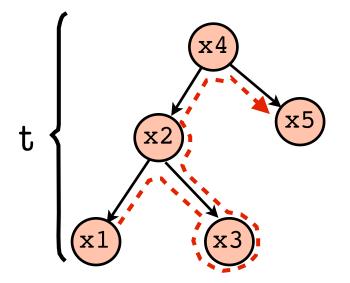


 $\begin{array}{l} \text{in-order of t is binary relation such} \\ \text{that: in-order}(x_i, x_j) \Leftrightarrow i \leq j \end{array}$

$$R_{i0}(t) = \{(x_i, x_j) \mid i \leq j\}$$

fwd-order of l is binary relation such that: fwd-order(x_i, x_j) $\Leftrightarrow i \leq j$

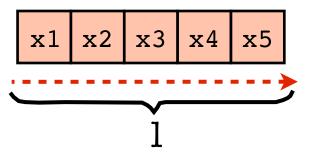




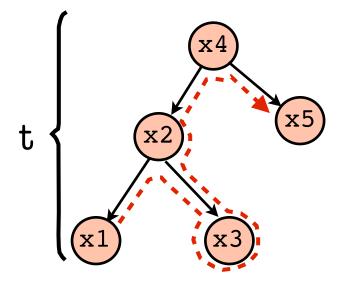
 $\begin{array}{ll} \text{in-order of t is binary relation such} \\ \text{that: in-order}(x_i, x_j) \Leftrightarrow i \leq j \end{array}$

$$R_{i0}(t) = \{(x_i, x_j) | i \le j\}$$

 $\frac{fwd-order \text{ of } l \text{ is binary relation such}}{that: fwd-order(x_i,x_j) \Leftrightarrow i \leq j}$



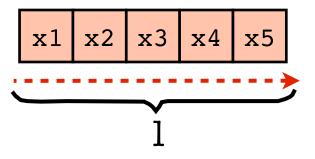
 $R_{fo}(l)$



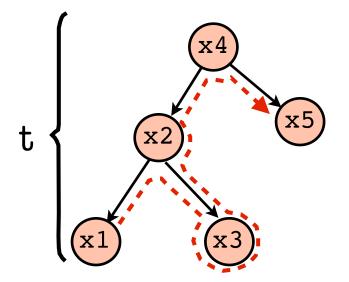
 $\begin{array}{l} \text{in-order of t is binary relation such} \\ \text{that: in-order}(x_i, x_j) \Leftrightarrow i \leq j \end{array}$

$$R_{i0}(t) = \{(x_i, x_j) \mid i \leq j\}$$

 $\frac{fwd-order \text{ of } l \text{ is binary relation such}}{that: fwd-order(x_i,x_j) \Leftrightarrow i \leq j}$



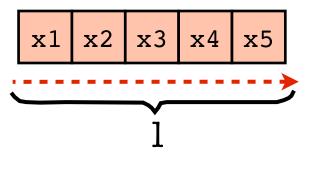
$$R_{fo}(l) = \{(x_i, x_j) \mid i \leq j\}$$



in-order of t is binary relation such that: in-order(x_i, x_j) $\Leftrightarrow i \leq j$

$$R_{i0}(t) = \{(x_i, x_j) | i \le j\}$$

 $\frac{fwd-order \text{ of } l \text{ is binary relation such}}{that: fwd-order(x_i,x_j) \Leftrightarrow i \leq j}$

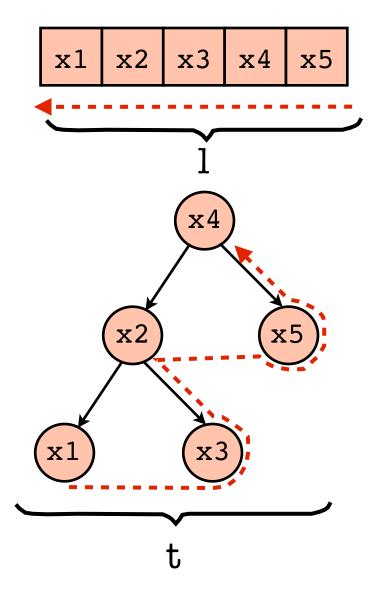


 $R_{fo}(l) = \{(x_i, x_j) \mid i \le j\}$

 \Rightarrow If list 1 contains elements of tree t in pre-order, then

 $R_{fo}(l) = R_{io}(t)$

post-order on tree t and backwardorder on list 1 are also binary relations, hence set of pairs.



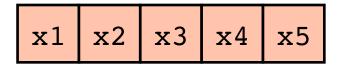
post-order on tree t and backwardorder on list 1 are also binary relations, hence set of pairs.

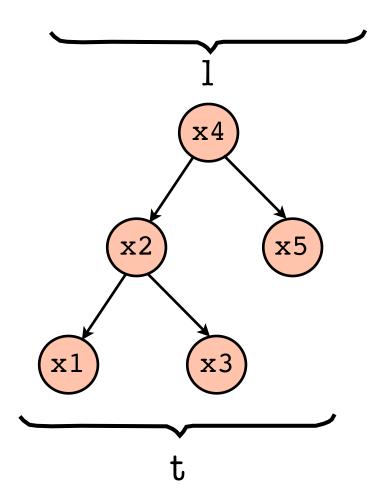
Of supplementary value are unary membership relations:

tree-members

$$R_{tm}(t) = R_{lm}(1) = \{x1, x2, x3, x4, x5\}$$

(list-members)





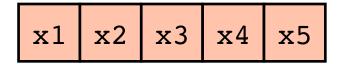
post-order on tree t and backwardorder on list 1 are also binary relations, hence set of pairs.

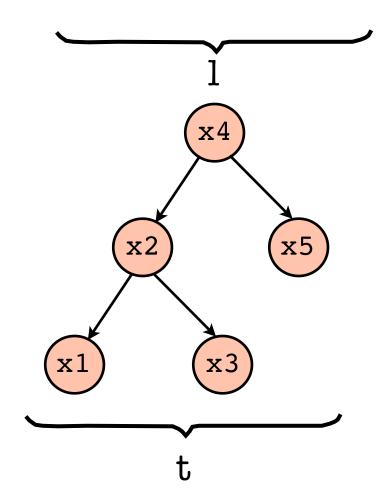
Of supplementary value are unary membership relations:

tree-members

$$R_{tm}(t) = R_{lm}(l) = \{x1, x2, x3, x4, x5\}$$

(list-members)





They let us write assertions over binary relations like $\ensuremath{\mathbb{R}_{po}}$

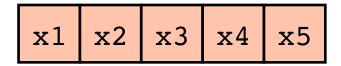
post-order on tree t and backwardorder on list 1 are also binary relations, hence set of pairs.

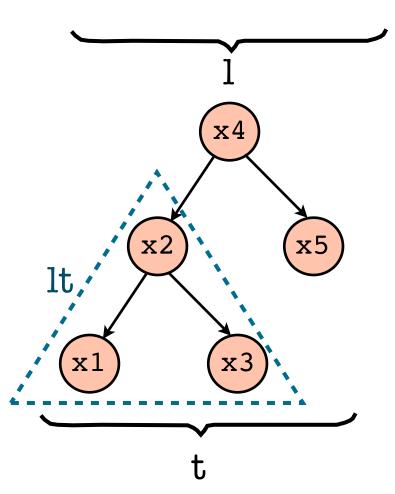
Of supplementary value are unary membership relations:

tree-members

$$R_{tm}(t) = R_{lm}(l) = \{x1, x2, x3, x4, x5\}$$

(list-members)





They let us write assertions over binary relations like $\ensuremath{\mathbb{R}_{po}}$

post-order on tree t and backwardorder on list 1 are also binary relations, hence set of pairs.

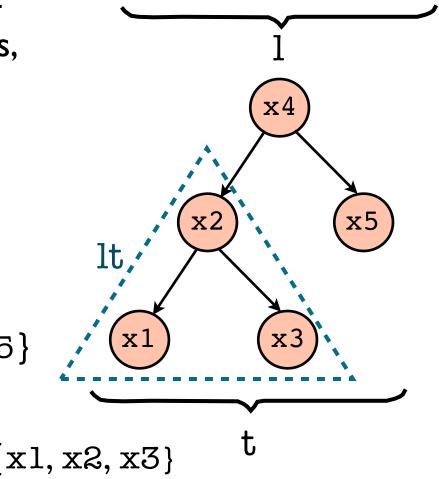
Of supplementary value are unary membership relations:

tree-members

$$R_{tm}(t) = R_{lm}(1) = \{x1, x2, x3, x4, x5\}$$

list-members
 $R_{tm}(lt) = \{x1, x2, x3\}$
 t

They let us write assertions over binary relations like $\ensuremath{\mathbb{R}_{po}}$



post-order on tree t and backwardorder on list 1 are also binary relations, hence set of pairs.

Of supplementary value are unary membership relations:

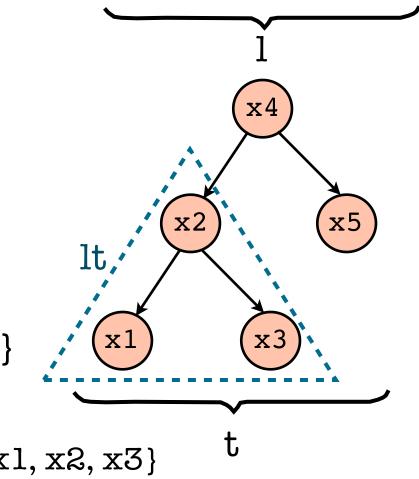
tree-members

$$R_{tm}(t) = R_{lm}(1) = \{x1, x2, x3, x4, x5\}$$

list-members
 $R_{tm}(lt) = \{x1, x2, x3\}$
 t

They let us write assertions over binary relations like R_{po} $R_{tm}(lt) \times \{x4\} \subset R_{io}(t)$

x1 x2 x3 x4 x5



... with relational operators, such as union and cross-product, is capable of expressing fine-grained shapes.

 \bigcup R_{fo}(xs)

... with relational operators, such as union and cross-product, is capable of expressing fine-grained shapes.

Equality (=) and Subset inclusion (\subset) predicates over relations let us relate shapes of data structures.

 \bigcup R_{fo}(xs)

... with relational operators, such as union and cross-product, is capable of expressing fine-grained shapes.

Equality (=) and Subset inclusion (\subset) predicates over relations let us relate shapes of data structures.

For Eg:

 \bigcup R_{fo}(xs)

... with relational operators, such as union and cross-product, is capable of expressing fine-grained shapes.

Equality (=) and Subset inclusion (\subset) predicates over relations let us relate shapes of data structures.

For Eg:

relation $R_{fo}(x::xs) = (\{x\} \times R_{mem}(xs)) \bigcup R_{fo}(xs)$

relation $R_{io}(Tree(L,n,R)) =$ ($R_{tm}(L) \times \{n\}$) \bigcup ($\{n\} \times R_{tm}(R)$) U $R_{io}(L)$ U $R_{io}(R)$

... with relational operators, such as union and cross-product, is capable of expressing fine-grained shapes.

Equality (=) and Subset inclusion (\subset) predicates over relations let us relate shapes of data structures.

For Eg:

relation $R_{fo}(x::xs) = (\{x\} \times R_{mem}(xs)) \bigcup R_{fo}(xs)$

relation $R_{io}(Tree(L,n,R)) =$ ($R_{tm}(L) \times \{n\}$) \bigcup ($\{n\} \times R_{tm}(R)$) \bigcup $R_{io}(L) \cup R_{io}(R)$

inOrder : {t: α tree} \rightarrow {l: α list | $R_{fo}(l) = R_{i0}(t)$ }

tail : {l: α list} \rightarrow {v: α list | $R_{fo}(v) \subset R_{fo}(l)$ }

... to facilitate compositional type checking and verification, we should be able to ascribe relational types to polymorphic and higher-order functions.

However ...

... to facilitate compositional type checking and verification, we should be able to ascribe relational types to polymorphic and higher-order functions.

For eg:

id :
$$\alpha \to \alpha$$

pairMap : $\alpha * \alpha \to (\alpha \to \beta) \to \beta * \beta$

... to facilitate compositional type checking and verification, we should be able to ascribe relational types to polymorphic and higher-order functions.

For eg:

id :
$$\alpha \to \alpha$$

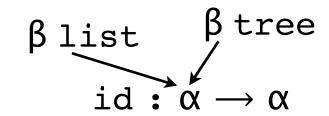
pairMap : $\alpha * \alpha \to (\alpha \to \beta) \to \beta * \beta$

Relational types for polymorphic and higher-order functions must be general enough to relate different shapes at different call sites.

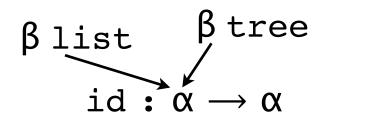
id : $\alpha \to \alpha$

id : $\alpha \to \alpha$

id : $\alpha \to \alpha$

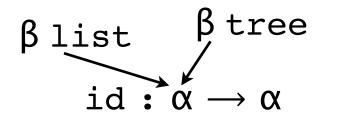


id can take arguments of unknown shape



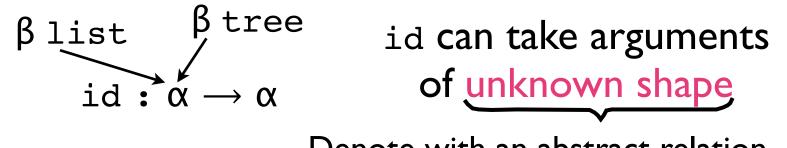
id can take arguments of unknown shape

Shape of the argument is also the shape of its result id : $\{x:\alpha\} \rightarrow \{y:\alpha \mid Shape(y) = Shape(x)\}$



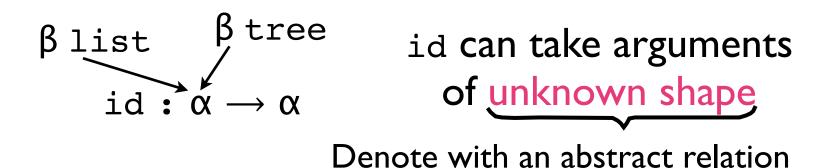
id can take arguments of unknown shape

Shape of the argument is also the shape of its result id : $\{x:\alpha\} \rightarrow \{y:\alpha \mid Shape(y) = Shape(x)\}$



Denote with an abstract relation

Shape of the argument is also the shape of its result id : {x: α } \rightarrow {y: α | Shape(y) = Shape(x)} ρ



Shape of the argument is also the shape of its result id : {x: α } \rightarrow {y: α | Shape(y) = Shape(x)} ρ (ρ) Id : {x: α } \rightarrow {y: α | $\rho(y) = \rho(x)$ }

Shape of the argument is also the shape of its result id: $\{x:\alpha\} \rightarrow \{y:\alpha \mid \underline{Shape}(y) = Shape(x)\}$ ρ $(\rho) Id: \{x:\alpha\} \rightarrow \{y:\alpha \mid \rho(y) = \rho(x)\}$ Relationally parametric type of id

... by focusing on possible shape invariance between α and β

 $(\rho_{\alpha}, \rho_{\beta})$ pairMap : $\{x_1:\alpha\} * \{x_2:\alpha\}$

 $\rightarrow \big(\{ \mathbf{x} : \alpha \} \rightarrow \{ \mathbf{y} : \beta \mid \rho_{\beta}(\mathbf{y}) = \rho_{\alpha}(\mathbf{x}) \} \big)$

$$\rightarrow \{ y_1:\beta \mid \rho_\beta(y_1) = \rho_\alpha(x_1) \} \\ * \{ y_2:\beta \mid \rho_\beta(y_2) = \rho_\alpha(x_2) \}$$

... by focusing on possible shape invariance between α and β

$$(\rho_{\alpha}, \rho_{\beta}) \text{ pairMap} : \{x_{1}:\alpha\} * \{x_{2}:\alpha\}$$

denote shapes $\rightarrow (\{x:\alpha\} \rightarrow \{y:\beta \mid \rho_{\beta}(y) = \rho_{\alpha}(x)\})$
of α and β ,
respectively $\rightarrow \{y_{1}:\beta \mid \rho_{\beta}(y_{1}) = \rho_{\alpha}(x_{1})\}$
 $* \{y_{2}:\beta \mid \rho_{\beta}(y_{2}) = \rho_{\alpha}(x_{2})\}$

... by focusing on possible shape invariance between α and β ($\rho\alpha, \rho\beta$) pairMap : {x₁: α }*{x₂: α } denote shapes $\rightarrow ({x:\alpha} \rightarrow {y:\beta \mid \rho\beta(y) = \rho\alpha(x)})$ of α and β , respectively $\rightarrow {y_1:\beta \mid \rho\beta(y_1) = \rho\alpha(x_1)}$ * {y₂: $\beta \mid \rho\beta(y_2) = \rho\alpha(x_2)$ }

... by focusing on possible shape invariance between α and β ($ρ_{\alpha}, ρ_{\beta}$) pairMap : {x₁: α } * {x₂: α } $\rightarrow (\{x:\alpha\} \rightarrow \{y:\beta \mid \rho_{\beta}(y) = \rho_{\alpha}(x)\})$ denote shapes of α and β , $\rightarrow \{y_1:\beta \mid \rho_\beta(y_1) = \rho_\alpha(x_1)\}$ respectively * { $y_2:\beta \mid \rho_{\beta}(y_2) = \rho_{\alpha}(x_2)$ }

gets propagated to result type

 $(\rho_{\alpha}, \rho_{\beta})$ pairMap : $\{x_1:\alpha\} * \{x_2:\alpha\}$

$$\rightarrow (\{\mathbf{x}:\alpha\} \rightarrow \{\mathbf{y}:\beta \mid \rho_{\beta}(\mathbf{y}) = \rho_{\alpha}(\mathbf{x})\})$$
$$\rightarrow \{\mathbf{y}_{1}:\beta \mid \rho_{\beta}(\mathbf{y}_{1}) = \rho_{\alpha}(\mathbf{x}_{1})\}$$
$$* \{\mathbf{y}_{2}:\beta \mid \rho_{\beta}(\mathbf{y}_{2}) = \rho_{\alpha}(\mathbf{x}_{2})\}$$

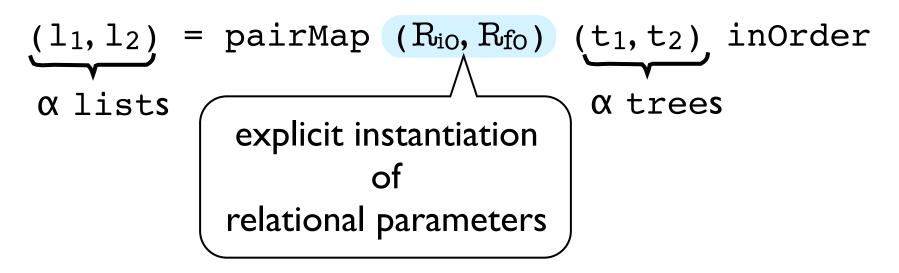
For eg:

$$\underbrace{(l_1, l_2)}_{\alpha \text{ lists}} = \text{pairMap } (R_{i0}, R_{f0}) \underbrace{(t_1, t_2)}_{\alpha \text{ trees}} \text{ inOrder}$$

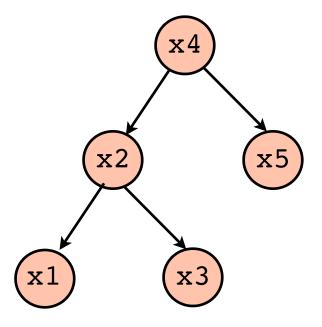
 $(\rho_{\alpha}, \rho_{\beta})$ pairMap : $\{x_1:\alpha\} * \{x_2:\alpha\}$

$$\rightarrow (\{\mathbf{x}:\alpha\} \rightarrow \{\mathbf{y}:\beta \mid \rho_{\beta}(\mathbf{y}) = \rho_{\alpha}(\mathbf{x})\})$$
$$\rightarrow \{\mathbf{y}_{1}:\beta \mid \rho_{\beta}(\mathbf{y}_{1}) = \rho_{\alpha}(\mathbf{x}_{1})\}$$
$$* \{\mathbf{y}_{2}:\beta \mid \rho_{\beta}(\mathbf{y}_{2}) = \rho_{\alpha}(\mathbf{x}_{2})\}$$

For eg:

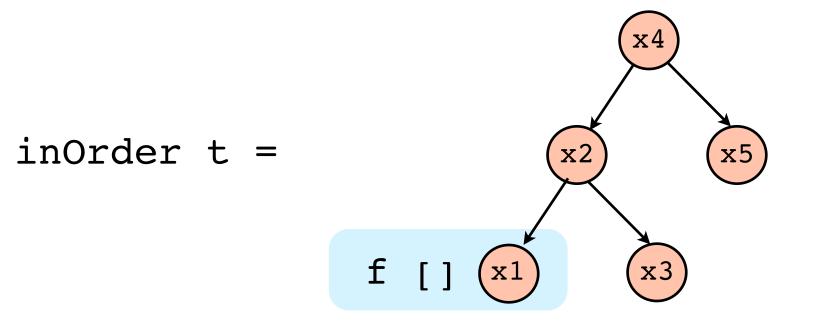


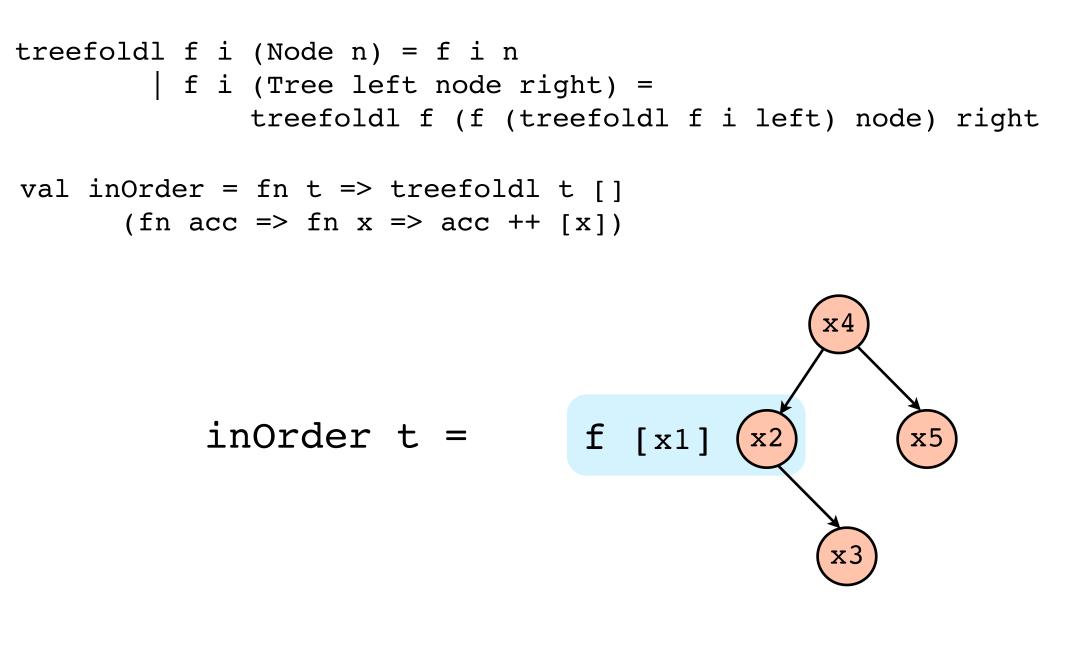
```
val inOrder = fn t => treefoldl t []
  (fn acc => fn x => acc ++ [x])
```



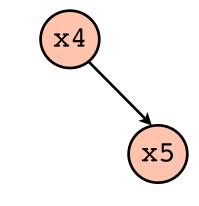
inOrder t =

val inOrder = fn t => treefoldl t []
 (fn acc => fn x => acc ++ [x])

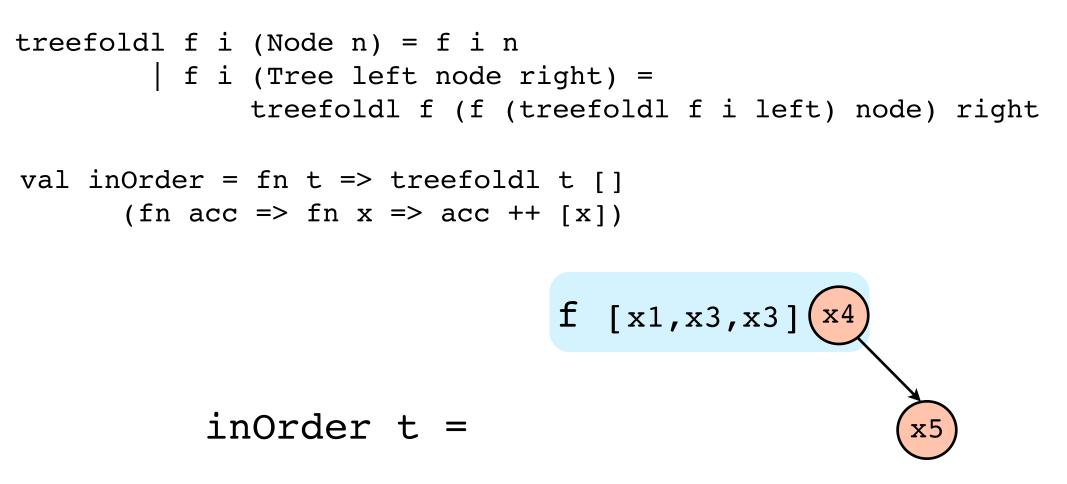




```
val inOrder = fn t => treefoldl t []
  (fn acc => fn x => acc ++ [x])
```



inOrder t =



```
val inOrder = fn t => treefoldl t []
  (fn acc => fn x => acc ++ [x])
```

```
inOrder t = f[x_1, x_3, x_3, x_4](x_5)
```

```
val inOrder = fn t => treefoldl t []
  (fn acc => fn x => acc ++ [x])
```

```
inOrder t = [x1, x3, x3, x4, x5]
```

treefoldl

```
treefoldl : \alpha tree \rightarrow \beta \rightarrow (\beta \rightarrow \alpha \rightarrow \beta) \rightarrow \beta
folds a tree from left to
right in in-order
```

treefoldl

treefoldl : α tree $\rightarrow \beta \rightarrow (\beta \rightarrow \alpha \rightarrow \beta) \rightarrow \beta$ folds a tree from left to right in in-order

A parametric type can be constructed to relate in-order (R_{i0}) on α tree to some notion of order captured by an abstract relation (ρ_0) on β

treefoldl

treefoldl : α tree $\rightarrow \beta \rightarrow (\beta \rightarrow \alpha \rightarrow \beta) \rightarrow \beta$ folds a tree from left to right in in-order

A parametric type can be constructed to relate in-order (R_{i0}) on α tree to some notion of order captured by an abstract relation (ρ_o) on β

$$\begin{array}{l} (\rho_{o}) \; \texttt{treefoldl:} \; \{\texttt{t:} \alpha \; \texttt{tree}\} \rightarrow ... \\ & \longrightarrow \; \{\texttt{v:} \; \beta \; \mid \; \rho_{o}(\texttt{v}) \; = \mathbb{R}_{io}(\texttt{t})\} \end{array}$$

 $(\rho_{m},\rho_{o}) \text{ treefoldl: } \{t:\alpha \text{ tree}\} \rightarrow \{b:\beta \mid \rho_{m}(b)=\emptyset \\ \land \rho_{o}(b)=\emptyset\}$

$$\rightarrow \left(\{ xs:\beta \} \rightarrow \{ x:\alpha \} \rightarrow \\ \{ v:\beta \mid \rho_m(v) = \rho_m(xs) \cup \{ x \} \\ \land \rho_o(v) = \rho_m(xs) \times \{ x \} \cup \rho_o(xs) \} \right)$$

 $\rightarrow \{y: \beta \mid \rho_o(y) = R_{io}(t) \land \rho_m(y) = R_{tm}(t) \}$

 $(\rho_{m},\rho_{o}) \text{ treefoldl: } \{t:\alpha \text{ tree}\} \rightarrow \{b:\beta \mid \rho_{m}(b)=\emptyset \\ \land \rho_{o}(b)=\emptyset\}$

$$\rightarrow \left(\{ xs:\beta \} \rightarrow \{ x:\alpha \} \rightarrow \\ \{ v:\beta \mid \rho_m(v) = \rho_m(xs) \cup \{ x \} \\ \land \rho_o(v) = \rho_m(xs) \times \{ x \} \cup \rho_o(xs) \} \right)$$

 $\rightarrow \{y: \beta \mid \rho_o(y) = R_{io}(t) \land \rho_m(y) = R_{tm}(t) \}$

Order invariant: relates in-order on the tree to a notion of order on β

 $(\rho_{m},\rho_{o}) \text{ treefoldl: } \{t:\alpha \text{ tree}\} \rightarrow \{b:\beta \mid \rho_{m}(b)=\emptyset \\ \land \rho_{o}(b)=\emptyset\}$

$$\rightarrow \left(\{ xs:\beta \} \rightarrow \{ x:\alpha \} \rightarrow \\ \{ v:\beta \mid \rho_m(v) = \rho_m(xs) \cup \{ x \} \\ \land \rho_o(v) = \rho_m(xs) \times \{ x \} \cup \rho_o(xs) \} \right)$$

 $\rightarrow \{y: \beta \mid \rho_{o}(y) = R_{io}(t) \land \rho_{m}(y) = R_{tm}(t) \}$

Membership invariant: relates membership of the tree to a notion of membership of β

Order invariant: relates in-order on the tree to a notion of order on β

 $(\rho_{m},\rho_{o}) \text{ treefoldl: } \{t:\alpha \text{ tree}\} \rightarrow \{b:\beta \mid \rho_{m}(b)=\emptyset \\ \land \rho_{o}(b)=\emptyset\}$

$$\rightarrow \left(\{ xs:\beta \} \rightarrow \{ x:\alpha \} \rightarrow \\ \{ v:\beta \mid \rho_m(v) = \rho_m(xs) \cup \{ x \} \\ \land \rho_o(v) = \rho_m(xs) \times \{ x \} \cup \rho_o(xs) \} \right)$$

 $\rightarrow \{y: \beta \mid \rho_{o}(y) = R_{io}(t) \land \rho_{m}(y) = R_{tm}(t) \}$

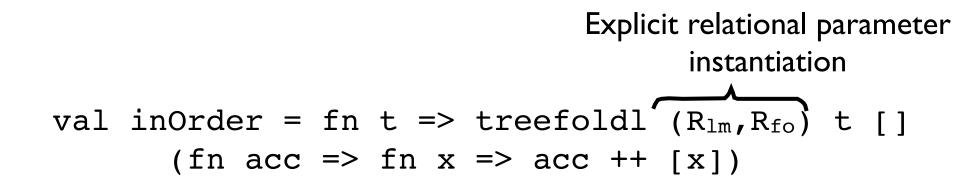
Membership invariant: relates membership of the tree to a notion of membership of β

Order invariant: relates in-order on the tree to a notion of order on β

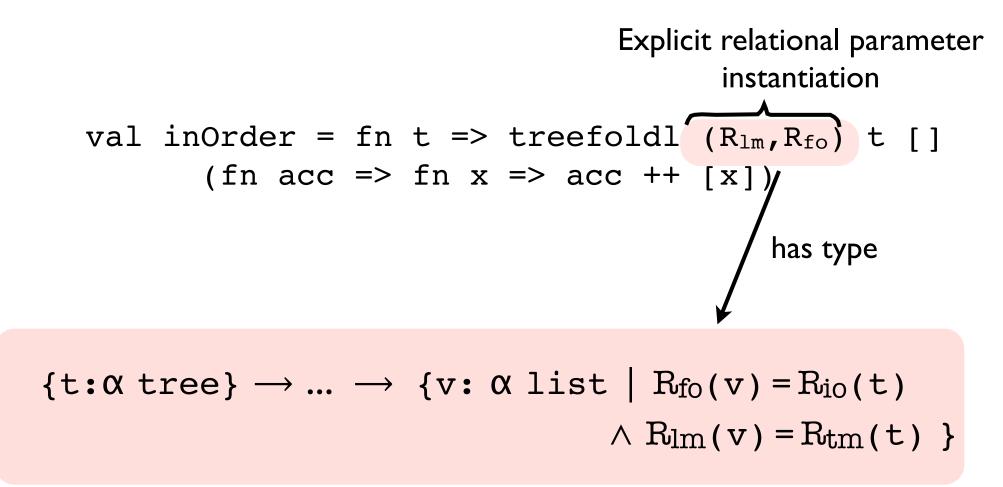
inOrder using treefoldl

val inOrder = fn t => treefoldl (R_{lm}, R_{fo}) t [] (fn acc => fn x => acc ++ [x])

inOrder using treefoldl



inOrder using treefoldl



id and pairMap are functions parameterized over relations

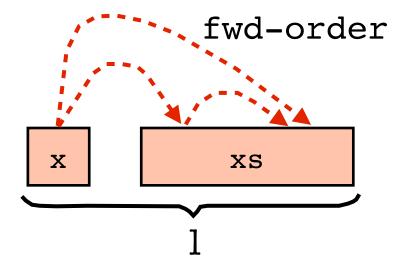
id and pairMap are functions parameterized over relations

id and pairMap are functions parameterized over relations

Relations can also be parameterized over relations

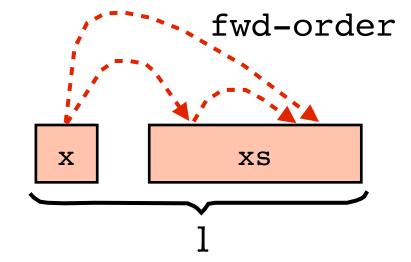
For Eg:

 $R_{fo}(l) = {x} \times R_{lm}(xs) \cup R_{fo}(xs)$

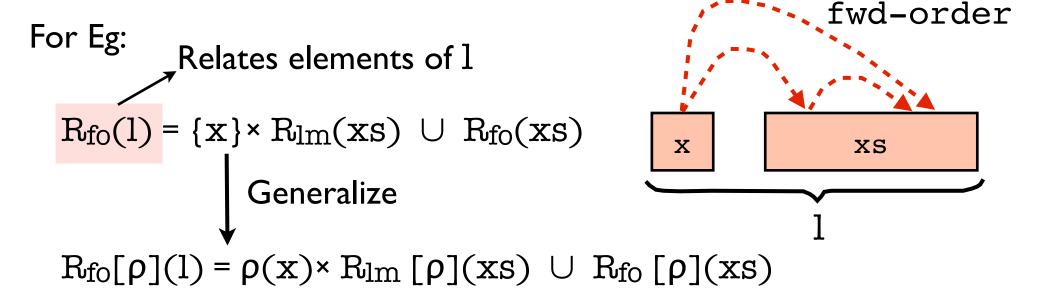


id and pairMap are functions parameterized over relations

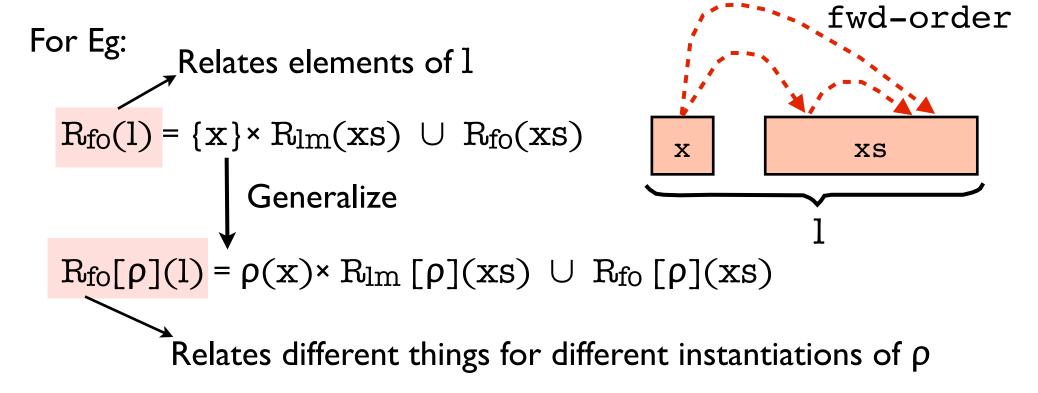
For Eg:
Relates elements of l
$$R_{fo}(l) = \{x\} \times R_{lm}(xs) \cup R_{fo}(xs)$$



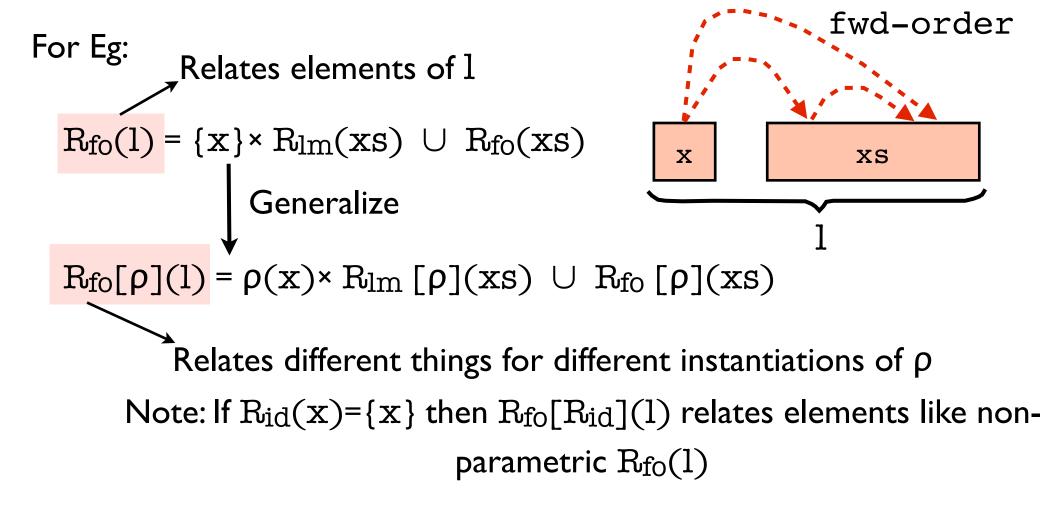
id and pairMap are functions parameterized over relations

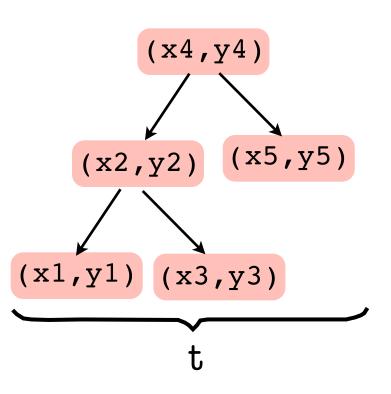


id and pairMap are functions parameterized over relations

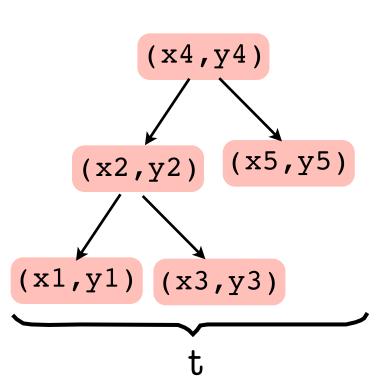


id and pairMap are functions parameterized over relations

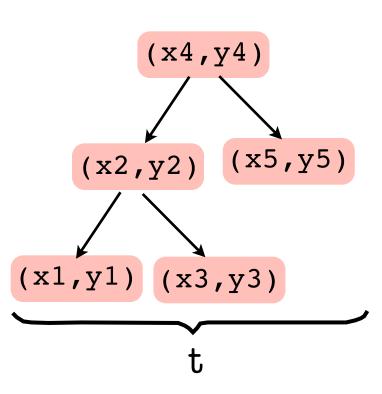




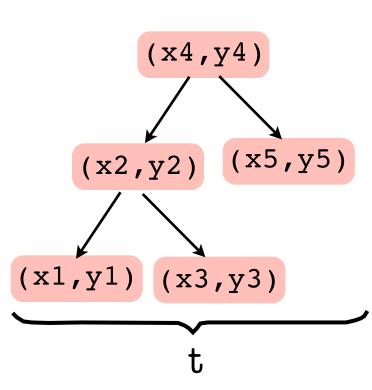
We know: $R_{i0}(t) = \{((x_i, y_i), (x_j, y_j)) \mid i \le j\}$



We know: $R_{io}(t) = \{((x_i, y_i), (x_j, y_j)) \mid i \le j\}$ By Definition: $R_{io}[\rho](t) = \{(\rho(x_i, y_i), \rho(x_j, y_j)) \mid i \le j\}$



We know: $R_{io}(t) = \{((x_i, y_i), (x_j, y_j)) \mid i \le j\}$ By Definition: $R_{io}[\rho](t) = \{(\rho(x_i, y_i), \rho(x_j, y_j)) \mid i \le j\}$ Let R_{fst} be a relation on pairs, such that $R_{fst}(x, y) = \{x\}$

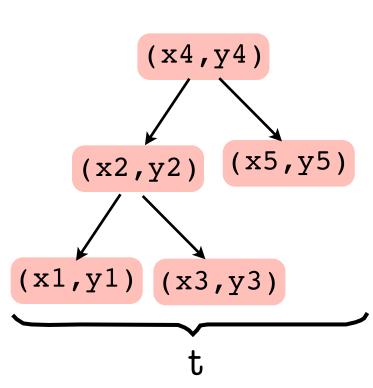


We know: $R_{io}(t) = \{((x_i, y_i), (x_j, y_j)) \mid i \leq j\}$ By Definition: $R_{io}[\rho](t) = \{(\rho(x_i, y_i), \rho(x_j, y_j)) \mid i \leq j\}$ Let R_{fst} be a relation on pairs, such that $R_{fst}(x, y) = \{x\}$

Now:

 $R_{i0}[R_{fst}](t) = \{R_{fst}(x_i, y_i), R_{fst}(x_j, y_j)) \mid i \leq j\}$

 $\Leftrightarrow R_{i0}[R_{fst}](t) = \{(x_i, x_j) \mid i \leq j\}$



We know: $R_{io}(t) = \{((x_i, y_i), (x_j, y_j)) \mid i \le j\}$ By Definition: $R_{io}[\rho](t) = \{(\rho(x_i, y_i), \rho(x_j, y_j)) \mid i \le j\}$ Let R_{fst} be a relation on pairs, such that $R_{fst}(x, y) = \{x\}$

Now:

 $R_{io}[R_{fst}](t) = \{R_{fst}(x_i, y_i), R_{fst}(x_j, y_j)) \mid i \leq j\}$

 $\Leftrightarrow R_{i0}[R_{fst}](t) = \{(x_i, x_j) \mid i \leq j\}$

in-order among first-components of pairs in t

treeMap : α tree $\rightarrow (\alpha \rightarrow \beta) \rightarrow \beta$ tree

```
treeMap : \alpha tree \rightarrow (\alpha \rightarrow \beta) \rightarrow \beta tree
```

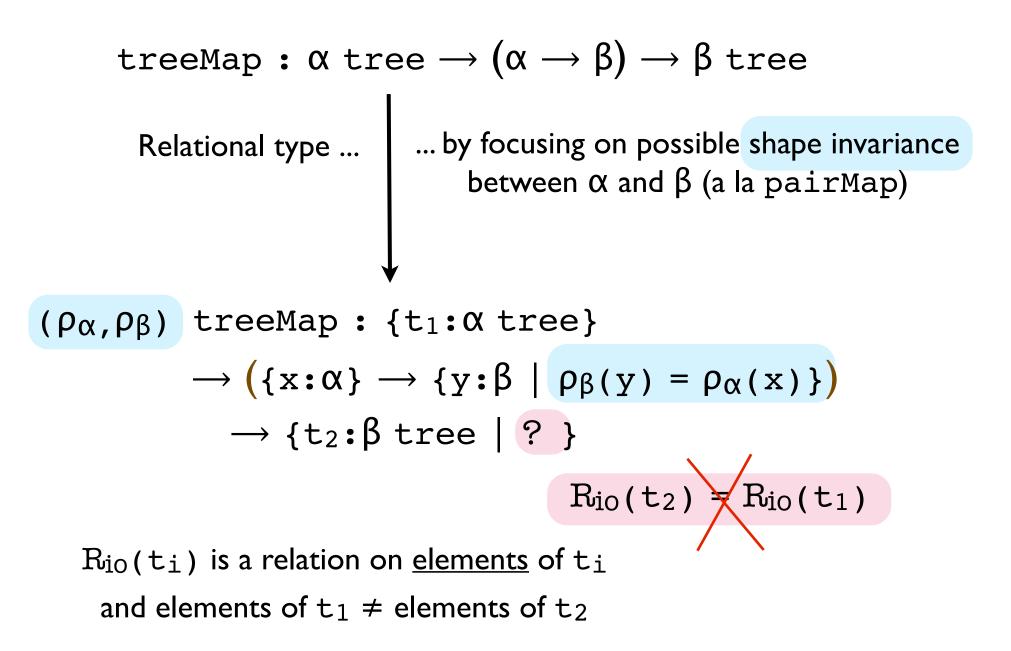
Relational type ... by focusing on possible shape invariance between α and β (a la pairMap)

```
(\rho_{\alpha},\rho_{\beta}) \text{ treeMap}: \{t_1:\alpha \text{ tree}\} \\ \rightarrow (\{x:\alpha\} \rightarrow \{y:\beta \mid \rho_{\beta}(y) = \rho_{\alpha}(x)\})
```

```
treeMap : \alpha tree \rightarrow (\alpha \rightarrow \beta) \rightarrow \beta tree
```

Relational type ... by focusing on possible shape invariance between α and β (a la pairMap)

```
\begin{array}{l} (\rho_{\alpha},\rho_{\beta}) & \texttt{treeMap}: \{\texttt{t}_{1}:\alpha\;\texttt{tree}\} \\ & \longrightarrow \big(\{\texttt{x}:\alpha\} \longrightarrow \{\texttt{y}:\beta \mid \rho_{\beta}(\texttt{y}) = \rho_{\alpha}(\texttt{x})\}\big) \\ & \longrightarrow \{\texttt{t}_{2}:\beta\;\texttt{tree} \mid ?\} \end{array}
```



```
treeMap : \alpha tree \rightarrow (\alpha \rightarrow \beta) \rightarrow \beta tree
```

Relational type ... by focusing on possible shape invariance between α and β (a la pairMap)

 $(\rho_{\alpha},\rho_{\beta}) \text{ treeMap}: \{t_{1}:\alpha \text{ tree}\} \\ \rightarrow (\{x:\alpha\} \rightarrow \{y:\beta \mid \rho_{\beta}(y) = \rho_{\alpha}(x)\}) \\ \rightarrow \{t_{2}:\beta \text{ tree} \mid \mathbb{R}_{io}[\rho_{\beta}](t_{2}) = \mathbb{R}_{io}[\rho_{\alpha}](t_{1})\}$

treeMap :
$$\alpha$$
 tree $\rightarrow (\alpha \rightarrow \beta) \rightarrow \beta$ tree
Relational type ... by focusing on possible shape invariance between α and β (a la pairMap)

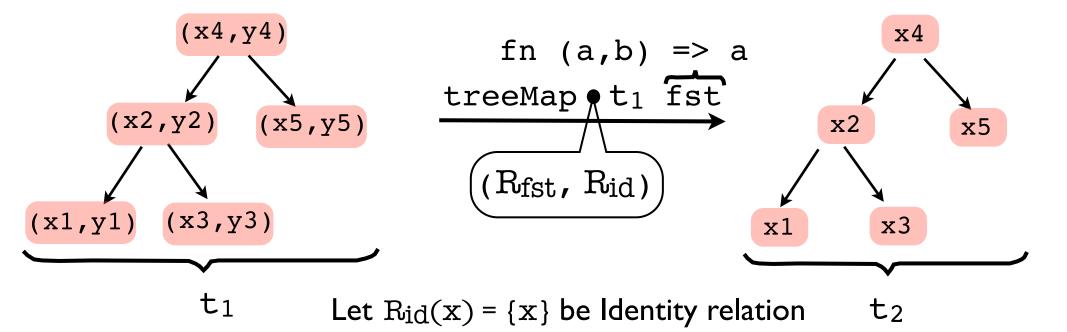
$$(\rho_{\alpha},\rho_{\beta}) \text{ treeMap}: \{t_{1}:\alpha \text{ tree}\} \\ \rightarrow (\{x:\alpha\} \rightarrow \{y:\beta \mid \rho_{\beta}(y) = \rho_{\alpha}(x)\}) \\ \rightarrow \{t_{2}:\beta \text{ tree} \mid R_{io}[\rho_{\beta}](t_{2}) = R_{io}[\rho_{\alpha}](t_{1})\}$$

Parametric in-order relation ($R_{i0}[\rho]$) is not necessarily a relation over elements.

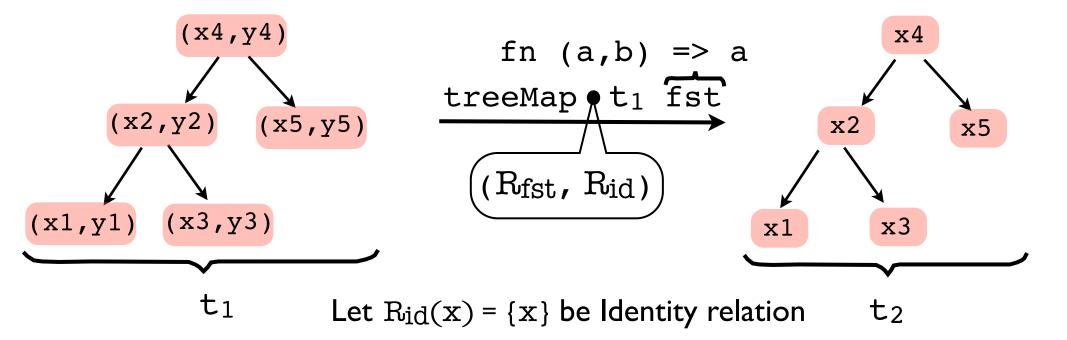
$(\rho_{\alpha},\rho_{\beta}) \text{ treeMap}: \{t_1:\alpha \text{ tree}\} \\ \rightarrow (\{x:\alpha\} \rightarrow \{y:\beta \mid \rho_{\beta}(y) = \rho_{\alpha}(x)\}) \\ \rightarrow \{t_2:\beta \text{ tree} \mid \mathbb{R}_{i0}[\rho_{\beta}](t_2) = \mathbb{R}_{i0}[\rho_{\alpha}](t_1)\}$

 $(\rho_{\alpha},\rho_{\beta}) \text{ treeMap}: \{t_{1}:\alpha \text{ tree}\} \\ \rightarrow (\{x:\alpha\} \rightarrow \{y:\beta \mid \rho_{\beta}(y) = \rho_{\alpha}(x)\}) \\ \rightarrow \{t_{2}:\beta \text{ tree} \mid R_{i0}[\rho_{\beta}](t_{2}) = R_{i0}[\rho_{\alpha}](t_{1})\}$

treeMap (\mathbb{R}_{fst} , \mathbb{R}_{id}): {t₁: α tree} $\rightarrow (\{x:\alpha\} \rightarrow \{y:\beta \mid \mathbb{R}_{id}(y) = \mathbb{R}_{fst}(x)\})$ $\rightarrow \{t_2:\beta$ tree $\mid \mathbb{R}_{io}[\mathbb{R}_{id}](t_2) = \mathbb{R}_{io}[\mathbb{R}_{fst}](t_1)\}$



treeMap (\mathbb{R}_{fst} , \mathbb{R}_{id}): {t₁: α tree} $\rightarrow (\{x:\alpha\} \rightarrow \{y:\beta \mid \mathbb{R}_{id}(y) = \mathbb{R}_{fst}(x)\})$ $\rightarrow \{t_2:\beta$ tree $\mid \mathbb{R}_{io}[\mathbb{R}_{id}](t_2) = \mathbb{R}_{io}[\mathbb{R}_{fst}](t_1)\}$



in-order among elements of $t_2 = in$ -order among first components of pairs in t_1

So far ...

• Relational language to express shapes

- Relational language to express shapes
- Functions parameterized on relations

- Relational language to express shapes
- Functions parameterized on relations
- Relations parameterized on relations

- Relational language to express shapes
- Functions parameterized on relations
- Relations parameterized on relations

Expressive type language

- Relational language to express shapes
- Functions parameterized on relations
- Relations parameterized on relations

Expressive type language

For type-based shape analysis to be effective, we need type checking with such expressive types to be decidable and practical

Decidability

Type checking is decidable if type refinements can be encoded in a decidable logic

$$\begin{split} \Gamma \vdash \{\nu : T \mid \phi_1\} & \Gamma \vdash \{\nu : T \mid \phi_2\} \\ \llbracket \Gamma_R \rrbracket \models \llbracket \Gamma, \nu : T \rrbracket \Rightarrow \llbracket \phi_1 \rrbracket \Rightarrow \llbracket \phi_2 \rrbracket \\ \Gamma \vdash \{\nu : T \mid \phi_1\} <: \{\nu : T \mid \phi_2\} \end{split}$$

i.e., if ϕ is a type refinement, then $[\phi]$ must be an expression in a decidable logic

For the language of relational type refinements, there exists such an encoding into a decidable subset of many-sorted first-order logic (MSFOL)

 \Rightarrow

Type checking is decidable

Many-sorted first-order logic is a syntactic extension of first-order logic with sorts (types)

We consider a <u>decidable subset</u> with ... Effectively Propositional (EPR) MSFOL

Uninterpreted sorts

Sorted variables

Sorted uninterpreted boolean functions (relations)

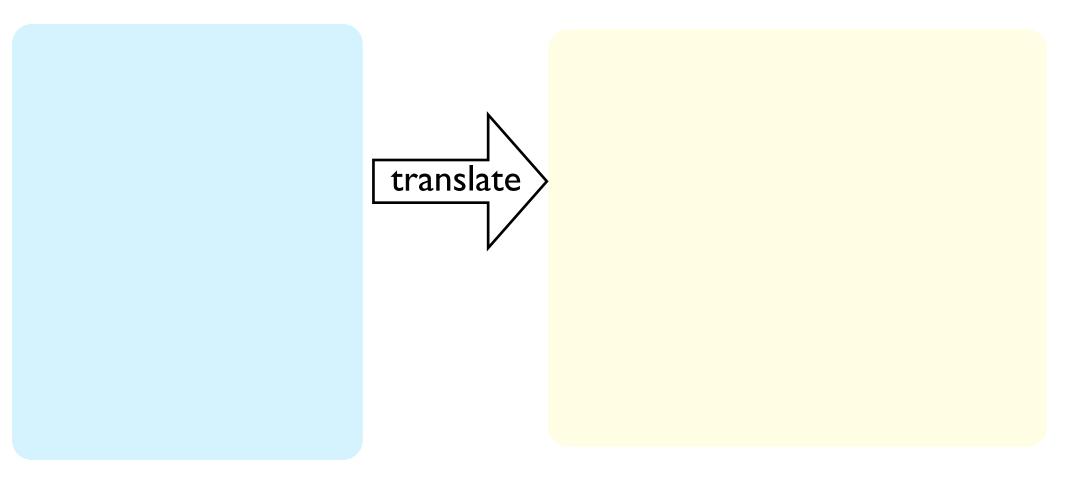
Prenex quantification over sorted variables

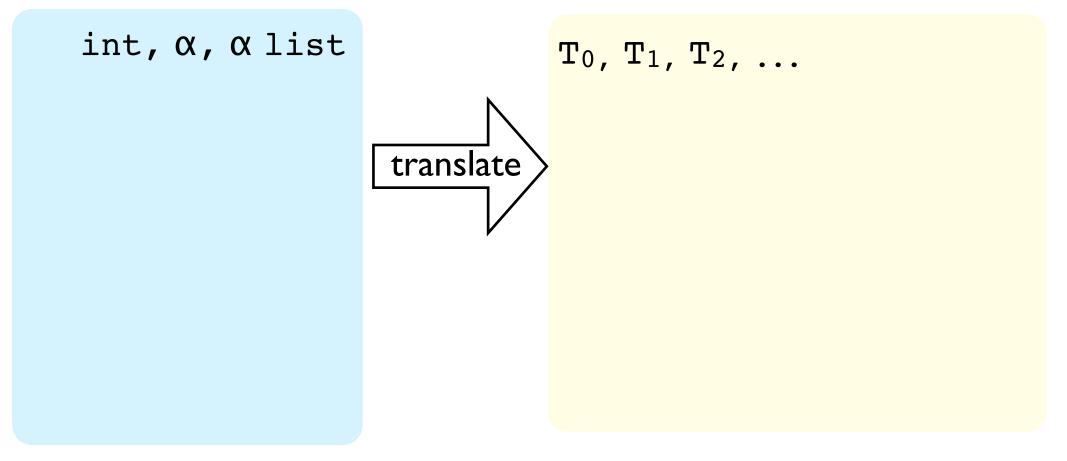
 $T_0, T_1, ...$

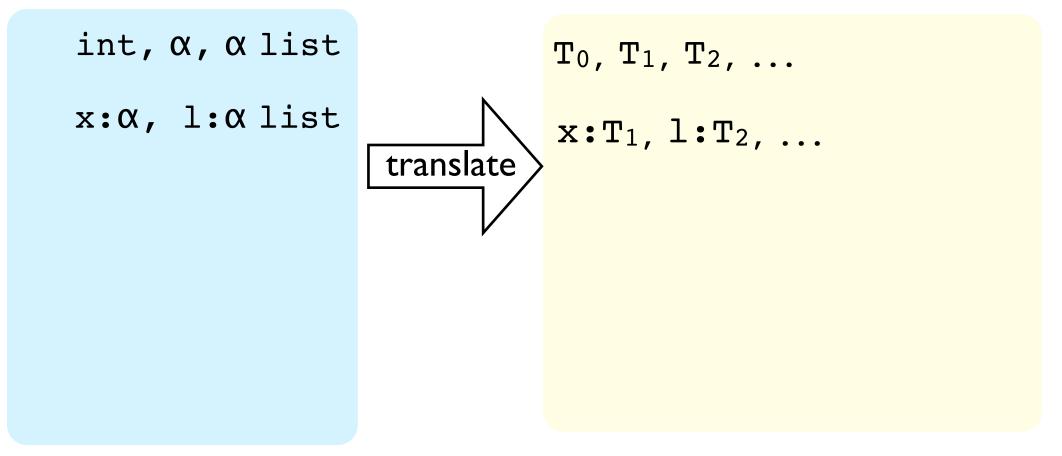
 $x:T_0, y:T_1, ...$

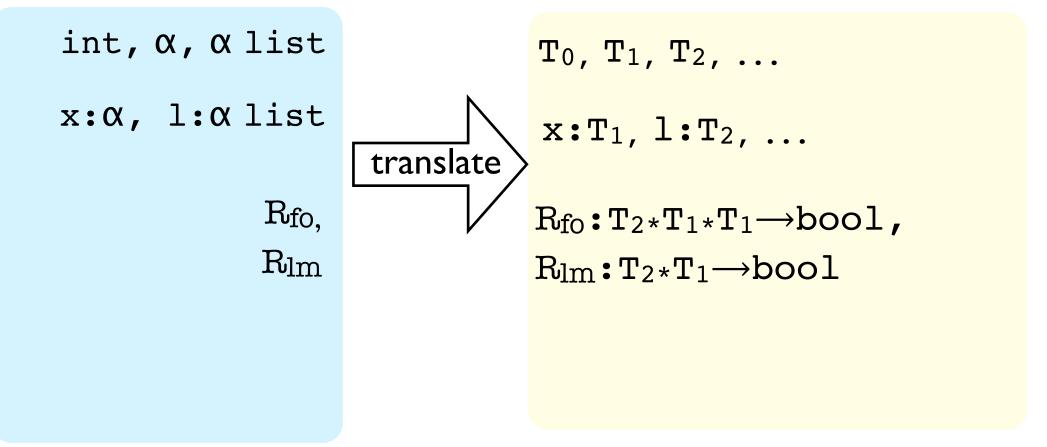
 $R:T_0 \rightarrow bool \dots$

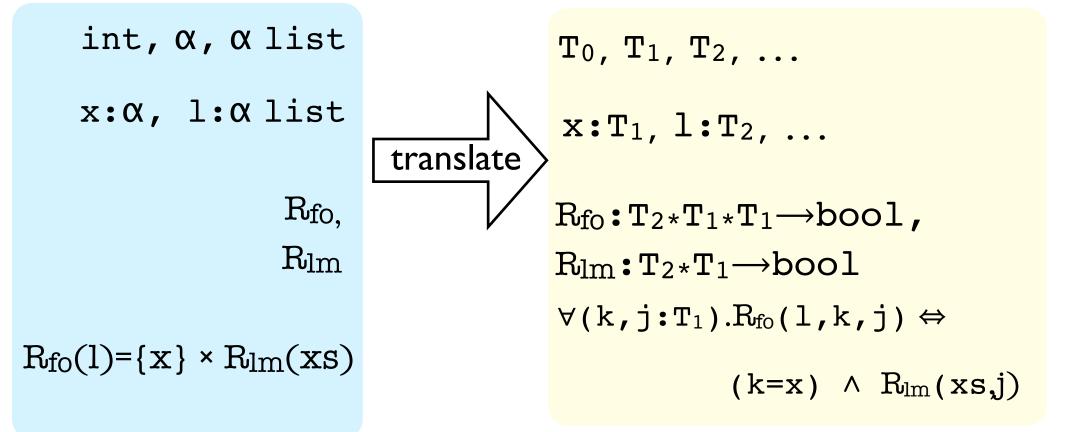
 $\forall (k:T_0).R(x,k) \Leftrightarrow x=k,$ $\exists (j:T_0).f(y) = j$

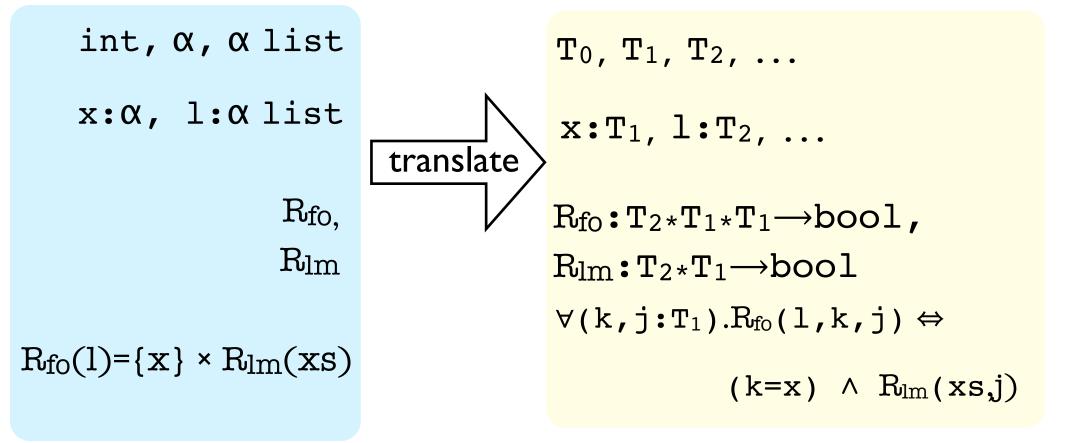




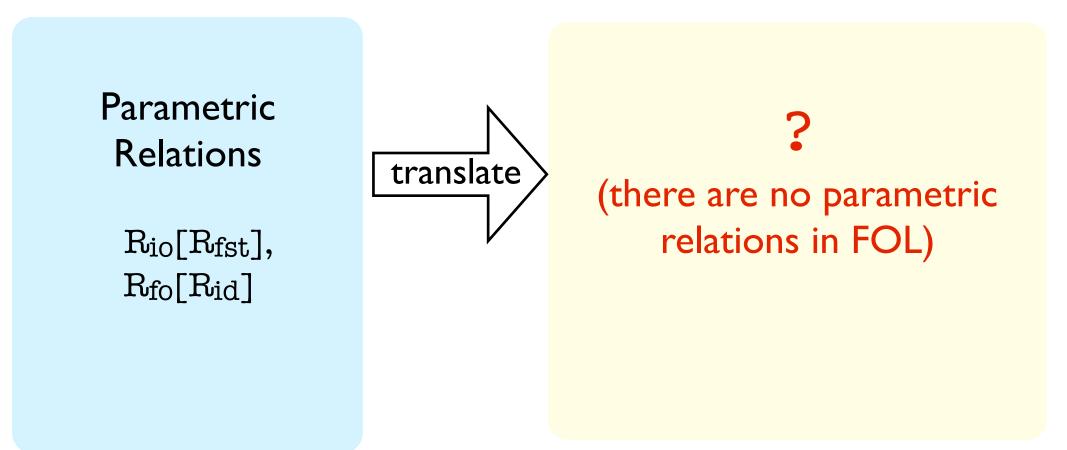




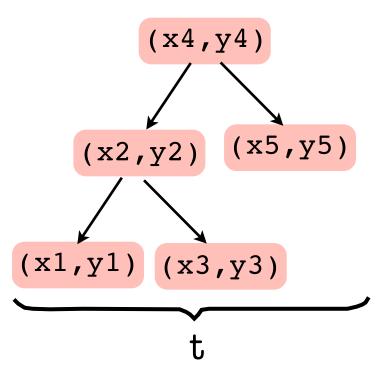




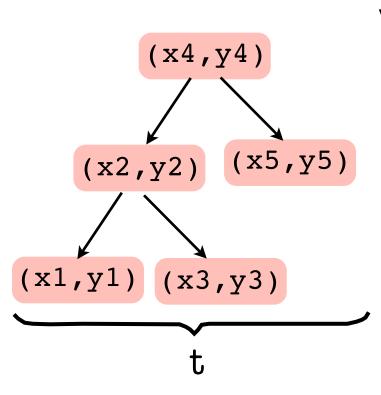
... parametric relations is not straightforward



For eg:

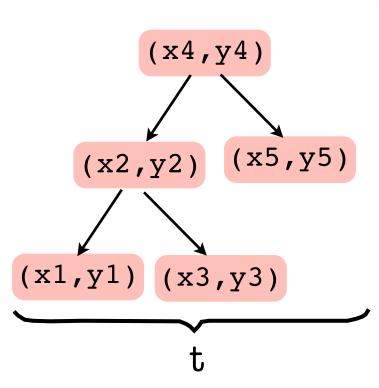


For eg:



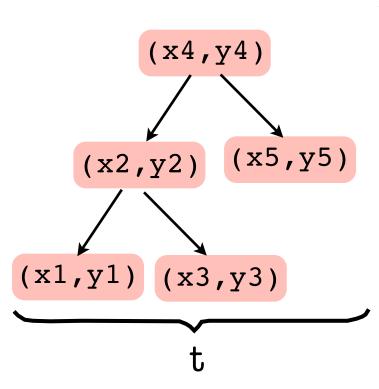
We have already seen: $R_{io}(t) = \{((x_i, y_i), (x_j, y_j)) \mid i \le j\}$ $R_{io}[R_{fst}](t) = \{(x_i, x_j) \mid i \le j\}$

For eg:



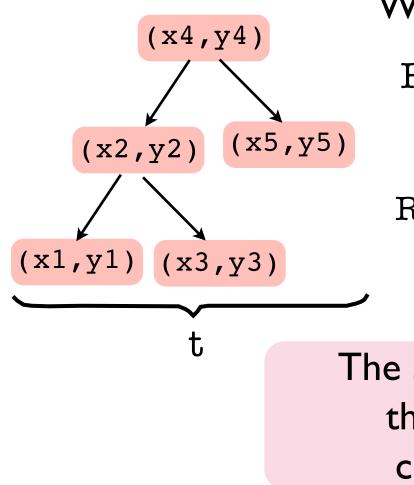
We have already seen: $R_{io}(t) = \{((x_i, y_i), (x_j, y_j)) \mid i \le j\}$ $R_{io}[R_{fst}](t) = \{(x_i, x_j) \mid i \le j\}$

For eg:



We have already seen: $R_{io}(t) = \{((x_i, y_i), (x_j, y_j)) \mid i \leq j\}$ $R_{io}[R_{fst}](t) = \{(x_i, x_j) \mid i \leq j\}$

For eg:

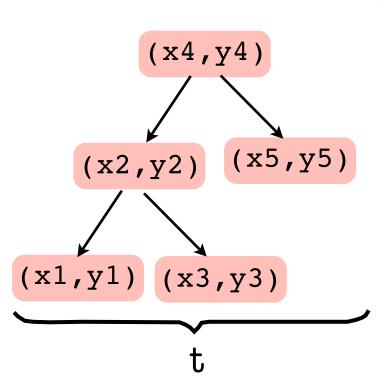


We have already seen:

 $R_{io}(t) = \{((x_i, y_i), (x_j, y_j)) \mid i \le j\}$ R_{fst} R_{fst} R_{fst} R_{fst} R_{fst} $R_{io}[R_{fst}](t) = \{(x_i, x_j) \mid i \le j\}$

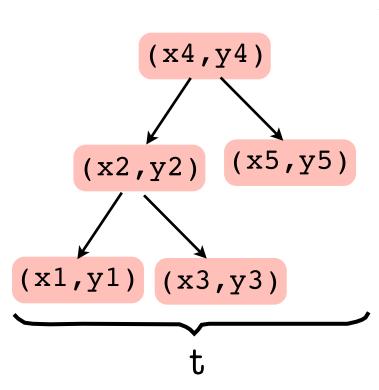
The set $R_{io}[R_{fst}](t)$ is obtained from the set $R_{io}(t)$ by mapping both components of pairs with R_{fst}

For eg:



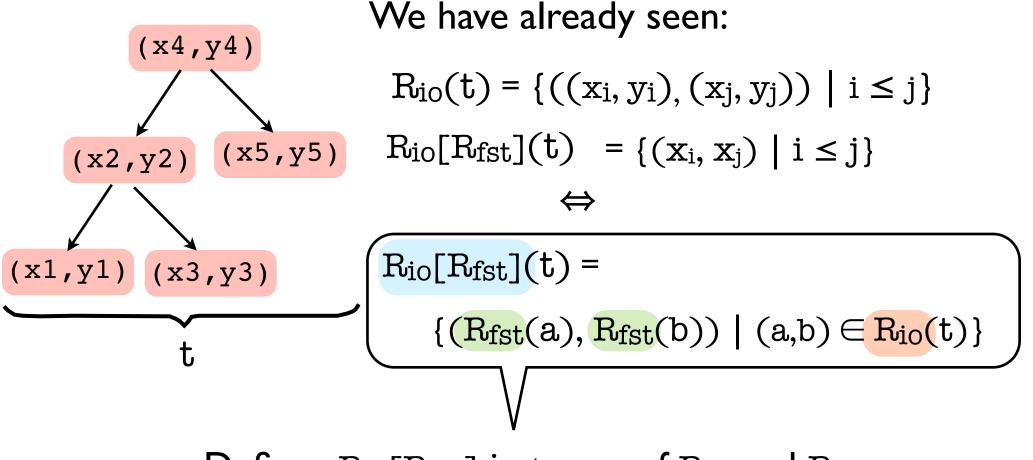
We have already seen: $R_{io}(t) = \{((x_i, y_i), (x_j, y_j)) \mid i \le j\}$ $R_{io}[R_{fst}](t) = \{(x_i, x_j) \mid i \le j\}$

For eg:



We have already seen: $R_{io}(t) = \{((x_i, y_i), (x_j, y_j)) \mid i \le j\}$ $R_{io}[R_{fst}](t) = \{(x_i, x_j) \mid i \le j\}$ \Leftrightarrow $R_{io}[R_{fst}](t) =$ $\{(R_{fst}(a), R_{fst}(b)) \mid (a,b) \in R_{io}(t)\}$

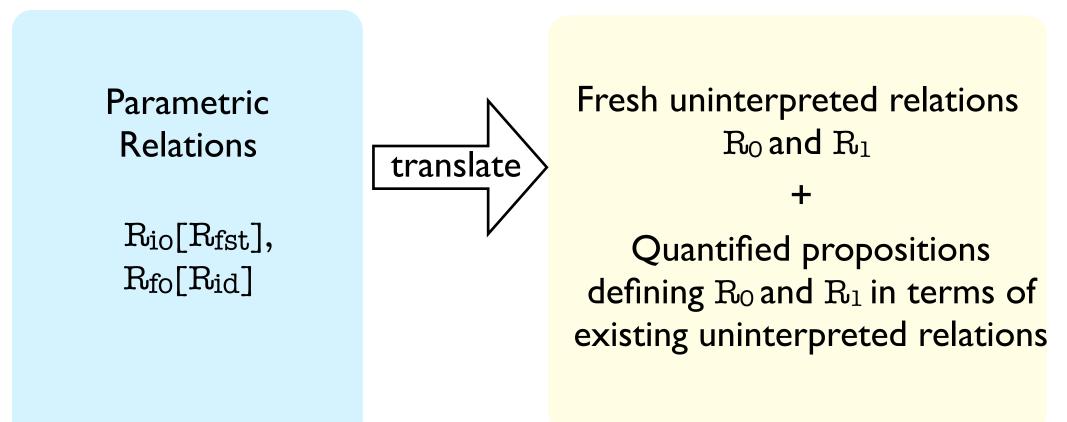
For eg:



Defines $R_{io}[R_{fst}]$ in terms of R_{io} and R_{fst}

Encoding ...

... parametric relations by defining them in terms of their component non-parametric relations



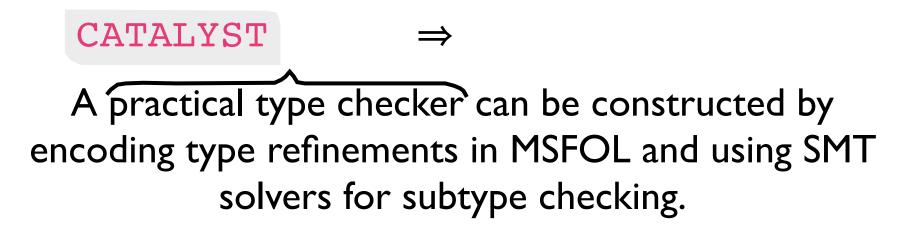
Off-the-shelf SMT solvers (eg: Z3) are efficient decision procedures for the EPR fragment of MSFOL.

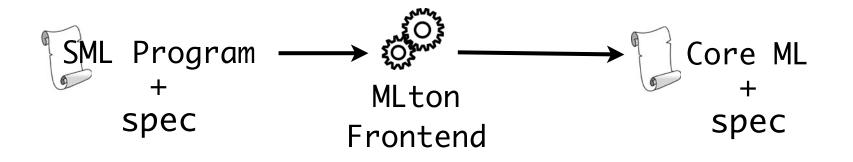
Off-the-shelf SMT solvers (eg: Z3) are efficient decision procedures for the EPR fragment of MSFOL.

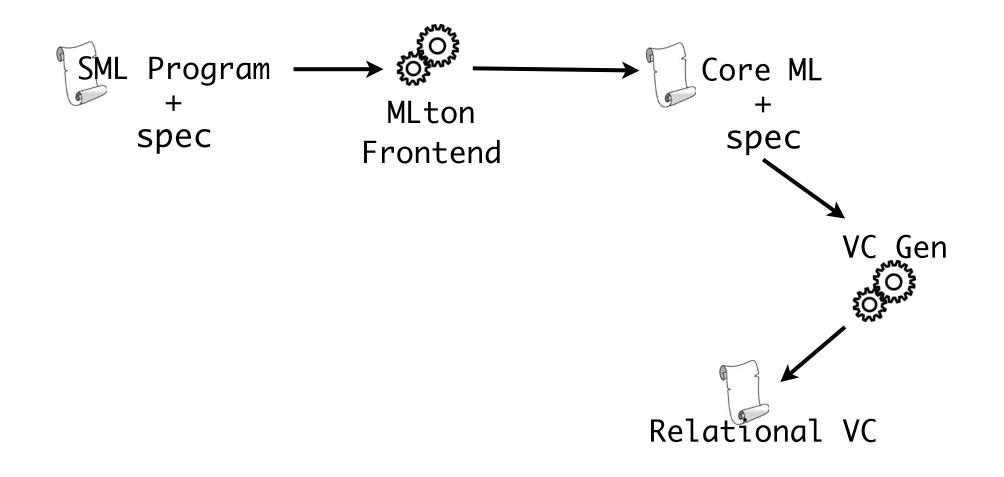
\Rightarrow

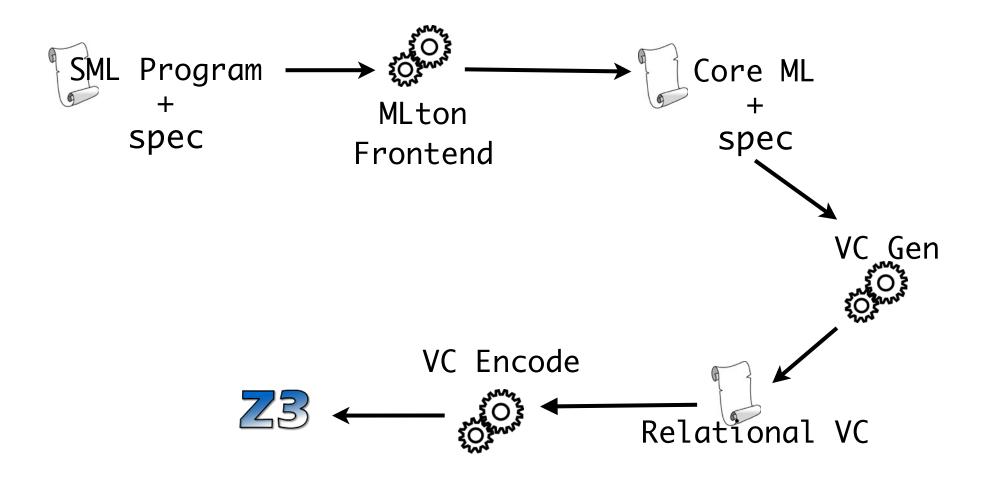
A practical type checker can be constructed by encoding type refinements in MSFOL and using SMT solvers for subtype checking.

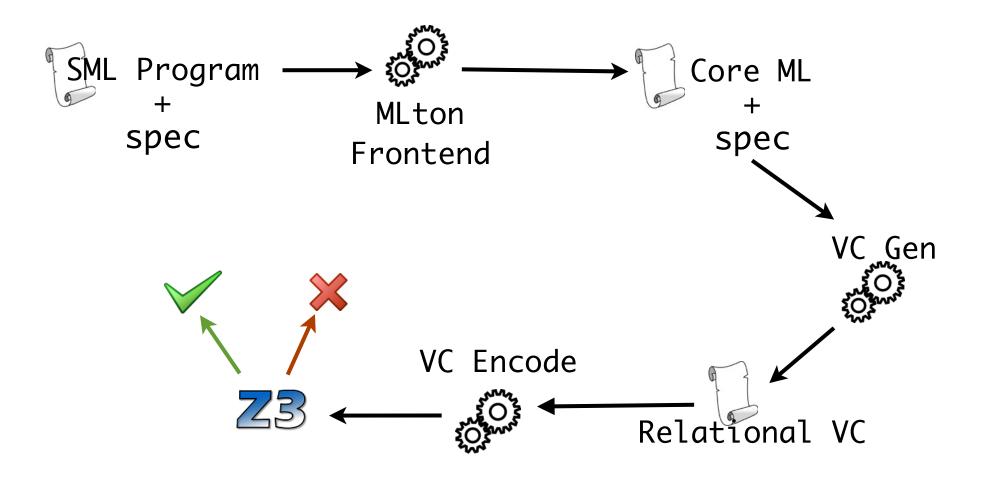
Off-the-shelf SMT solvers (eg: Z3) are efficient decision procedures for the EPR fragment of MSFOL.











Validation

٠

٠

Lists	Okasaki trees	Functional Graphs
rev	inOrder	folds
concat	preOrder	traversals
map	postOrder	maps
foldl	treefoldl	
foldr	treefoldr	•
exists	balance	
filter	rotate	

٠

٠

MLton functions

alpha-rename substitutions SSA

Validation

٠

٠

Okasaki trees	Functional Graphs
inOrder	folds
preOrder	traversals
postOrder	maps
treefoldl	
treefoldr	•
balance	
rotate	
	trees inOrder preOrder postOrder treefoldl treefoldr balance

٠

٠

MLton functions

alpha-rename substitutions SSA

- GADTs in OCaml and Haskell
- Type refinements in F^*
- Abstract refinements in Liquid Types
- Logical Relations
- Shape analysis for higher-order control flow

Conclusions

Marriage of a relational specification language with a dependent type system capable of describing expressive structural invariants of functional data structures

Future Directions

- Extensions to deal with non-inductive structures
- Automated inference
- Basis for "lightweight" verified compilation

https://github.com/tycon/catalyst